[PDF] PRODUIT SCALAIRE DANS LESPACE Donc l'ensemble E est





Previous PDF Next PDF



Ensemble de points- Lieu de points Objectif

1 avr. 2014 Des points fixes sont donnés. M est un point du plan caractérisé par une relation r (géométrique analytique



APPLICATIONS DU PRODUIT SCALAIRE

Méthode : Déterminer un angle à l'aide du produit scalaire L'ensemble ? est le cercle de centre le point de coordonnées (1 ; 5) et de rayon 3.



Calcul vectoriel – Produit scalaire

Méthode. Calculer des produits scalaires. Sur la figure ci-contre ABCD est un rectangle tel que On appelle ? l'ensemble des points M du plan tels que.



Méthodes de géométrie dans lespace Déterminer une équation

Deux vecteurs sont orthogonaux si et seulement si leur produit scalaire est nul Déterminer l'ensemble des points M(x ;y ;z) de l'espace qui vérifient :.



PRODUIT SCALAIRE DANS LESPACE

Donc l'ensemble E est le plan passant par A et de vecteur normal . Exemple : Le plan d'équation cartésienne a pour vecteur normal . Méthode : Déterminer une 



5. Produit scalaire de deux vecteurs

b) Autre méthode basée sur le produit scalaire : la droite d peut être vue comme l'ensemble des points P(x



Cours doptimisation

Addition de POINTS ensemble possible mais on s'interdira de le faire. 1.2. Vecteurs : Norme et Produit scalaire. 1.2.1. La norme.



PRODUIT SCALAIRE DANS LESPACE

On en déduit que est le point du plan le plus proche du point . Méthode : Utiliser la projection orthogonale pour déterminer la distance d'un point à un 



PRODUIT SCALAIRE (Partie 2)

Méthode : Calculer un produit scalaire par projection Propriété : L'ensemble des points M vérifiant l'égalité &&&&&&?.



VECTEURS DROITES ET PLANS DE LESPACE

d passant par et de vecteur directeur {? est l'ensemble des points tels Méthode : Utiliser le produit scalaire pour démontrer une orthogonalité.



Produit scalaire – Fiche de cours

3 Lieux de points - Lignes de niveaux Résoudre une ligne de niveau de valeur le réel k consiste à caractériser l’ensemble des points M du plan tel que f(M)=k Exemple : ?AB??AM=100 2/2 Produit scalaire – Fiche de cours Mathématiques Première générale - Année scolaire 2019/2020 https://physique-et-maths



PRODUIT SCALAIRE ( dans le plan ) - Pierre Lux

PRODUIT SCALAIRE La notion de produit scalaire est apparue pour les besoins de la physique Le concept relativement récent et a été introduit au milieu du XIXe siècle par le mathématicien allemand Hermann Grassmann (1809 ; 1877) ci-contre Il fut baptisé produit scalaire par William Hamilton (1805 ; 1865) en 1853 I Définition et



PRODUIT SCALAIRE DANS L'ESPACE - maths et tiques

Définition : Soit un point A et une droite d de l’espace La projection orthogonale de A sur d est le point H appartenant à d tel que la droite (AH) soit perpendiculaire à la droite d 2) Projection orthogonale d’un point sur un plan Définition : Soit un point A et un plan P de l’espace



PRODUIT SCALAIRE ( dans le plan ) - Pierre Lux

Le produit scalaire de deux vecteurs est égal au produit de leurs normes par le cosinus de l’angle qu’ils forment où O A et B sont trois points du plan tels que ?u=?OA et ?v=?OB H est le projeté orthogonal de B sur (OA) d ?u??v=?OA??OB={OA×OH ?OA×OH si ?OA et ?OH sont de même sens



ème Maths Chapitre : Produit scalaire:Ensemble points ww

Produit scalaire 2 Correction: I) A/ MA MB 0 c’est le cercle de diamètre [AB] B/ AM AB 0 L’ensemble des points M est la droite perpendiculaire à (AB) passant par A C/ AM AB 24 Soit H le point de (AB) tel que AH AB 24 On a AH AB AM AB donc AH AB AM AB 0 donc AB AH AM ( ) 0 donc ABMH 0



Searches related to ensemble de points produit scalaire méthode PDF

Ces propriétés permettent d’effectuer des opérations sur le produit scalaire comme le produit et la somme de quantités algébriques C’est une sorte de distributivité Propriété : On a les propriétés suivantes : Q? et R sont colinéaires de même sens ? Q? R =? Q? ?×? R ?

Comment calculer le produit scalaire d’un vecteur ?

Le produit scalaire de deux vecteurs est égal au produit de leurs normes par le cosinus de l’angle qu’ils forment. où O , A et B sont trois points du plan tels que ?u=?OA et ?v=?OB . H est le projeté orthogonal de B sur (OA) d ?u??v=?OA??OB={OA×OH ?OA×OH si ?OAet ?OHsont de même sens si ?OAet ?OHsont de sens contraire

Qu'est-ce que le produit scalaire?

PRODUIT SCALAIRE La notion de produit scalaire est apparue pour les besoins de la physique. Le concept relativement récent et a été introduit au milieu du XIXe siècle par le mathématicien allemand Hermann Grassmann (1809 ; 1877), ci-contre. Il fut baptisé produit scalaire par William Hamilton(1805 ; 1865) en 1853.

Comment calculer le signe du produit scalaire ?

B ) REMARQUES - Signe du produit scalaire : On déduit facilement le signe du produit scalaire ?OA??OB suivant la nature de l’angle ^AOB. En effet les normes des deux vecteurs ?OA et ?OB sont positives . On en déduit donc que ?OA??OB est du signe de cos^AOB. 0?^AOB< ? 2 ^AOB=? 2 ? 2 0 ?OA??OB=0 ?OA??OB

1

PRODUIT SCALAIRE

DANS L'ESPACE

I. Produit scalaire de deux vecteurs

1) Définition

Soit et deux vecteurs de l'espace. A, B et C trois points tels que et Il existe un plan P contenant les points A, B et C.

Définition :

On appelle produit scalaire de l'espace de et le produit égal au produit scalaire dans le plan P.

On a ainsi :

- si ou est un vecteur nul,

Exemple :

Vidéo https://youtu.be/vp3ICG3rRQk

ABCDEFGH est un cube d'arête a.

uvuAB=vAC=uv.uv.ABAC.0uv=uv .cos ;uvuv uv=´´ 2 uvAB DG ABAF ABAB a H 2

2) Propriétés

Les propriétés dans le plan sont conservées dans l'espace. Propriétés : Soit , et trois vecteurs de l'espace. - et sont orthogonaux.

Démonstration :

Il existe un plan P tel que les vecteurs et admettent des représentants dans P. Dans le plan, les règles de géométrie plane sur les produits scalaires s'appliquent.

3) Expression analytique du produit scalaire

Propriété : Soit et deux vecteurs de l'espace muni d'un repère orthonormé . Alors .

Et en particulier : .

Démonstration :

En effet, on a par exemple dans le plan définit par le couple : , et .

On a en particulier : .

Exemple :

Vidéo https://youtu.be/N1IA15sKH-E

On considère le repère de l'espace .

uvw 2 .uuu= ..uvvu = ...uvwu vuw +=+ ...kuvu kvk uv== kÎ.0uv=Ûuvuv x uy z x vy z ,,,Oijk .'''uvx xyy zz=++ 222
.uuuxyz==++ uvx iyj zkxiyjz k xxiixy ij xzi kyxjiy yjj yzj kzxkizyk jzzk k xxyyzz ;ij 2 .1iii== 2 .1jjj== ..0ijji == 2 222
.uuu xxy yzz xyz==++=++ ;,,CCBCDCG 3

Alors : et soit .

Alors .

Les vecteurs et ne sont pas orthogonaux.

II. Vecteur normal à un plan

1) Définition et propriétés

Définition : Un vecteur non nul de l'espace est normal à un plan P lorsqu'il est orthogonal à tout vecteur admettant un représentant dans P. Théorème : Un vecteur non nul de l'espace est normal à un plan P s'il est orthogonal à deux vecteurs non colinéaires de P.

Démonstration :

Elle est incluse dans la démonstration du corollaire qui suit. Au XIXe siècle, le vecteur normal , appelé produit vectoriel, est noté ⋀. Le produit vectoriel a été inventé par un mathématicien allemand, Hermann

Günther Grassmann (1809 ; 1877).

Corollaire : Une droite est orthogonale à toute droite d'un plan si et seulement si elle est orthogonale à deux droites sécantes de ce plan.

Démonstration (exigible BAC) :

- Si une droite est orthogonale à toute droite d'un plan P alors elle est en particulier orthogonale à deux droites sécantes de P. - Démontrons la réciproque : 1 1 1 CE 10 01 0,50 DI 1 1 0,5 DI .111110,50,5CEDI =´+´-+´= CE DI nnnuv 4 Soit une droite de vecteur directeur orthogonale à deux droites et de P sécantes et de vecteurs directeurs respectifs et . Alors et sont non colinéaires et orthogonaux au vecteur . Soit une droite quelconque () de P de vecteur directeur .

Démontrons que () est orthogonale à .

peut se décomposer en fonction de et qui constituent une base de P (car non colinéaires).

Il existe donc deux réels x et y tels que .

Donc , car est orthogonal avec et .

Donc est orthogonal au vecteur .

Et donc est orthogonale à ().

Méthode : Déterminer si un vecteur est normal à un plan

Vidéo https://youtu.be/aAnz_cP72Q4

ABCDEFGH est un cube.

Démontrer que le vecteur est normal au plan

(ABG).

On considère le repère .

Dans ce repère : ,,,,.

On a ainsi :

, et , donc : Donc est orthogonal à deux vecteurs non colinéaires de (ABG), il est donc normal à (ABG). Méthode : Déterminer un vecteur normal à un plan

Vidéo https://youtu.be/IDBEI6thBPU

Dans un repère orthonormé, soit et .

Déterminer un vecteur normal au plan (ABC).

d n 1 d 2 d uvuvn D w D d wuv wxuyv=+...0wnxu nyvn=+= nuvnw d D CF ;,,BBABC BF 1 0 0 A 0 0 0 B 0 1 0 C 0 0 1 F 0 1 1 G 0 1 1 CF 0 1 1 BG 1 0 0 AB .0011110 .0(1)10100 CFBG CFAB CF 11 2,3 21
AB 2 0 2 C 5

On a : et .

Soit un vecteur orthogonal au plan (ABC). Il est tel que : soit

Prenons par exemple, alors et .

Le vecteur est donc normal au plan (ABC).

2) Equation cartésienne d'un plan

Théorème : L'espace est muni d'un repère orthonormé . Un plan P de vecteur normal non nul admet une équation cartésienne de la forme , avec ℝ. Réciproquement, si a, b et c sont non tous nuls, l'ensemble des points tels que , avec ℝ, est un plan.

Démonstration (exigible BAC) :

- Soit un point de P. 2 1 3 AB 1 2 0 AC a nb c .0 .0 nAB nAC 230
20 abc ab 2230
2 330
2 2 bbc ab bc ab cb ab b=1 1c= a=2 2 1 1 n ;,,Oijk a nb c ax+by+cz+d=0 dÎ x My z ax+by+cz+d=0 dÎ A A A x Ay z 6 et sont orthogonaux avec . - Réciproquement, supposons par exemple que (a, b et c sont non tous nuls). On note E l'ensemble des points vérifiant l'équation

Alors le point vérifie l'équation .

Et donc E.

Soit un vecteur . Pour tout point , on a :

E est donc l'ensemble des points tels que .

Donc l'ensemble E est le plan passant par A et de vecteur normal .

Exemple :

Le plan d'équation cartésienne a pour vecteur normal . Méthode : Déterminer une équation cartésienne de plan

Vidéo https://youtu.be/s4xqI6IPQBY

Dans un repère orthonormé, déterminer une équation cartésienne du plan P passant par le point et de vecteur normal . x MyP z AM n.0AMnÛ= 0 0 AAA AAA axxb yyc zz axbyc zaxby cz

Ûax+by+cz+d=0

d=-ax A -by A -cz A a¹0 x My z ax+by+cz+d=0 ;0;0 d A a ax+by+cz+d=0 AÎ a nb c x My z .000 d

AMna xby cz axbyc zd

a x My z .0AMn=n x-y+5z+1=0 1 1 5 n 1 2 1quotesdbs_dbs22.pdfusesText_28