[PDF] Calcul stochastique appliqué à la finance





Previous PDF Next PDF



INTRODUCTION AU CALCUL STOCHASTIQUE

INTRODUCTION AU CALCUL. STOCHASTIQUE. Nadine GUILLOTIN-PLANTARD. 13 novembre 2009. Page 2. Table des mati`eres. 1 Processus stochastiques. 3.



Introduction au calcul stochastique

INTRODUCTION AU CALCUL STOCHASTIQUE par Marc YOR. Séminaire BOURBAKI. 34e année 1981/82



Damien Lamberton Bernard Lapeyre-Introduction au Calcul

de calcul stochastique en finance. Une option est un titre financier donnant à son détenteur le droit et non l'obligation d'acheter ou de vendre (selon qu 



Introduction au calcul stochastique appliqué à la finance

L'erreur la plus sérieuse était une affirmation fausse concernant les intégrales stochastiques (voir le résumé des propriétés de l'intégrale stochastique à la 



Introduction au calcul stochastique et aux mathématiques financi`eres

Pour un exposé plus complet on se référera `a la vaste littérature disponible sur le sujet. 1 Introduction au calcul stochastique. 1.1 Variables aléatoires.



Calcul stochastique appliqué à la finance

L'introduction de cette probabilité permet de faire comme si les agents étaient neutres au risque mais attention ce n'est pas le cas ! ! ! Page 17. 2.4 



1 Introduction but du cours

https://www.math.univ-toulouse.fr/~pontier/Squ_insa.pdf



Progrès récents en calcul stochastique quantique

Introduction. Le calcul stochastique quantique (voir aussi l'exposé n° 672. Nov. 1986) devrait jouer en physique quantique le rôle que joue le calcul stochas-.



Calcul stochastique

1 oct. 2023 Le calcul stochastique et la formule d'Itô en particulier permettent de créer des liens féconds entre processus stochastiques et équations ...



Introduction au calcul stochastique

2 sept. 2020 Certaines applications sont tirées du cours. Martingales et calcul stochastique de Nils Berglund dans lequel des exercices sont proposés. Le.



INTRODUCTION AU CALCUL STOCHASTIQUE

13 nov. 2009 Exercice 1.4 : Un processus stochastique (Xt)t?R+ est dit auto-similaire. (d'ordre 1) si pour tout ? > 0



Calcul stochastique appliqué à la finance

5 Calcul stochastique Le modèle binomial est très pratique pour les calculs et la plus grande partie des ... L'introduction de cette probabilité permet.



Introduction au calcul stochastique appliqué à la finance

INTRODUCTION AU CALCUL STOCHASTIQUE POUR LA FINANCE. 2 Martingales et arbitrages. Afin d'examiner les liens entre martingales et arbitrage nous allons tout 



Introduction au calcul stochastique

LÉVY - Processus stochastiques et mouvement brownien Gauthiers-Villars



Damien Lamberton Bernard Lapeyre-Introduction au Calcul

INTRODUCTION. AU CALCUL STOCHASTIQUE. APPLIQUÉ À LA FINANCE. 3e édition. Damien Lamberton. Université Paris-Est. Professeur à l'Université Paris-Est.



Cours de Calcul stochastique Master 2IF EVRY

Excellent ouvrage d'introduction au calcul stochastique. B. Oksendal [10] Excellent livre



Introduction au calcul stochastique et aux mathématiques financi`eres

1 Introduction au calcul stochastique. 1.1 Variables aléatoires. Une variable aléatoire X est caractérisée par sa loi (ou distribution) elle-même donnée.



Calcul stochastique

1 oct. 2021 présentation des martingales (Section 1.5) formule de Tanaka (Section 1.6). ... La formule d'Itô est l'outil de base du calcul stochastique ...



1 Introduction but du cours

http://www.math.univ-toulouse.fr/~pontier/Squ_insa.pdf



80-646-08 - Calcul stochastique I

15 fév. 2011 Introduction au calcul stochastique appliqueì aÌ la finance / Damien Lamberton Bernard Lapeyre. ISBN : 2729847820.



Introduction au calcul stochastique appliqué à la ?nance

10 INTRODUCTION AU CALCUL STOCHASTIQUE POUR LA FINANCE – le prix d’exercice qui est le prix (?xé d’avance) auquel se fait la transaction en cas d’exer-cice de l’option L’option elle même a un prix appelé la prime Lorsque l’option est cotée sur un marché or-ganisé la prime est donnée par le marché



Introduction au calcul stochastique - univ-toulousefr

Ce cours a pour objectif d’introduire la notion d’intégrale stochastique par rapport au mouve-ment brownien L’exposition suit le livre [8] en omettant par moments certains détails techniques Les résultats principaux du cours sont la formule d’Ito et ses conséquences; la notion d’équations



Calcul stochastique appliqué à la ?nance - Dauphine-PSL Paris

5 On peut emprunter et prêter au même taux constant r Ces hypothèses bien que n’étant pas toujours véri?ées dans la réalité constituent une pre-mière modélisation ayant l’avantage de pouvoir fournir une évaluation des produits dérivés notamment à l’aide de la notion d’arbitrage que nous présentons dans la suite



Introduction au calcul stochastique et aux math ematiques

Olivier Lev^ eque olivier leveque#ep ch ISM Adona Cotonou Benin - semaine du 7 au 11 janvier 2013 L'objectif de ce cours est d'introduire les etudiants aux notions de base du calcul stochas- tique et des mathematiques nancieres en particulier l'evaluation et la couverture d'options

Calcul stochastique appliqué à la finance

Calcul stochastique appliqué à la finance

Romuald ELIE & Idris KHARROUBI

Table des matières

1 Notion d"arbitrage 5

1.1 Hypothèses sur le marché . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.2 Arbitrage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.3 Comparaison de portefeuilles . . . . . . . . . . . . . . . . . . . . . . . . . .

1.4 Relation de parité Call-Put . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.5 Prix d"un contrat Forward . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 Modèle binomial à une période 11

2.1 Modélisation probabiliste du marché . . . . . . . . . . . . . . . . . . . . . .

2.2 Stratégie de portefeuille simple . . . . . . . . . . . . . . . . . . . . . . . . .

2.3 Probabilité risque neutre . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.4 Evaluation et couverture d"un produit dérivé . . . . . . . . . . . . . . . . . .

3 Modèle binomial à plusieurs périodes 21

3.1 "Rappels" de probabilité : processus discret et martingale . . . . . . . . . . .

3.2 Modélisation du marché . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.3 Stratégie de portefeuille . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.4 Arbitrage et probabilité risque neutre . . . . . . . . . . . . . . . . . . . . . .

3.5 Duplication d"un produit dérivé . . . . . . . . . . . . . . . . . . . . . . . . .

3.6 Evaluation et couverture d"un produit dérivé . . . . . . . . . . . . . . . . . .

4 Options américaines dans le modèle binomial 33

4.1 Notion de temps d"arrêt en temps discret . . . . . . . . . . . . . . . . . . . .

4.2 Arrêt optimal et enveloppe de Snell . . . . . . . . . . . . . . . . . . . . . . .

4.3 Evaluation des options américaines . . . . . . . . . . . . . . . . . . . . . . .

4TABLE DES MATIÈRES

5 Calcul stochastique 41

5.1 Processus et Martingale . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.1.1 Processus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.1.2 EspacesLp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41

5.1.3 Filtration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.1.4 Martingale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.1.5 Processus gaussien . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.2 Mouvement brownien . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.3 Variation totale et variation quadratique . . . . . . . . . . . . . . . . . . . .

5.4 Intégrale stochastique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.5 Formule d"Ito . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.6 Processus d"Ito . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.7 Equation Différentielle Stochastique . . . . . . . . . . . . . . . . . . . . . .

6 Modèle de Black & Scholes 77

6.1 Hypothèses sur le marché . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.2 Modélisation probabiliste du marché . . . . . . . . . . . . . . . . . . . . . .

6.3 Probabilité risque neutre . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.4 Portefeuilles autofinançants . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.5 Duplication d"un produit dérivé . . . . . . . . . . . . . . . . . . . . . . . . .

6.6 Formule de Black Scholes . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.7 Sensibilités . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Chapitre 1

Notion d"arbitrage

1.1 Hypothèses sur le marché

Dans toute la suite, nous ferons les hypothèses simplificatrices suivantes :

Les act ifssont di visiblesà l"infini ;

Le marché est liquide : on peut acheter ou v endreà tout instant ;

On peut em prunteret v endreà découv ert;

Les échan gesont lieu sans coûts de transaction ; On peut em prunteret prêter au même taux constant r.

Ces hypothèses, bien que n"étant pas toujours vérifiées dans la réalité, constituent une pre-

mière modélisation ayant l"avantage de pouvoir fournir une évaluation des produits dérivés,

notamment à l"aide de la notion d"arbitrage que nous présentons dans la suite.

1.2 Arbitrage

De manière générale, la notion d"opportunité d"arbitrage fait référence à une situation où

un individu rationnel a la possibilité de prendre une décision qui lui permet de tirer profit de

manière certaine de l"avenir. Afin de formaliser cette notion, il faut donc mettre en place une modélisation de l"incertitude liée à l"évolution future du marché financier.

6CHAPITRE 1. NOTION D"ARBITRAGE

Quelles sont les évolutions possibles du marché? : ensemble des états possibles du marché;

P: Probabilité réelle (ou en tout cas anticipée) de survenance de chacun des évènements.

Toujours dans le but de formaliser cette notion d"arbitrage, il nous faut préciser la manière dont peut intervenir notre agent sur le marché.

Quelles sont les stratégies d"investissement?

Définition 1.2.1Unportefeuille autofinancantest une stratégie (non anticipative) d"achat

ou de vente de titres, actions, prêts et emprunts à la banque, et plus généralement de produits

dérivésdont la valeur n"est pas modifiée par l"ajout ou le retrait d"argent. PourtT, on noteraXtlavaleur entdu portefeuilleX. Fixer un portefeuille revient donc simplement à se donner un capital initial et une stratégie dynamique d"investissement dans les actifs du marché à partir de ce capital de départ.

Qu"est ce qu"une stratégie d"arbitrage?

Définition 1.2.2Unarbitrageentre les instants0etTest un portefeuille autofinançantXde valeur nulle ent= 0dont la valeurXTenTest positive et strictement positive avec une probabilité strictement positive :

0= 0; XT0etP(XT>0)>0:

d"opportunités d"arbitrage(AOAen abrégé et NFL en anglais pourno free lunch) entre les

instants0etT:fX0= 0etXT0g )P(XT>0) = 0L"hypothèse signifie simplement : "Si ma richesse aujourd"hui est nulle, elle ne peut deve-

nir positive et non identiquement nulle", soit "On ne peut gagner d"argent sans capital initial". Le raisonnement (défaitiste) est : "Si il y avait un arbitrage, quelqu"un en aurait déja pro- sur les marchés.

1.3. COMPARAISON DE PORTEFEUILLES7

1.3 Comparaison de portefeuilles

Nous notons dans la suiteB(t;T)le prix entd"unzéro couponde maturitéT i:e:un actif dont la valeur enTvaut1. La valeurB(t;T)dépend du modèle choisi. Dans le cas d"un modèle en temps continu, la présence du taux d"intérêtrconduit àB(t;T) =e(Tt)alors que dans un modèle en temps discretB(t;T) = (1+r)noùndésigne le nombre de périodes entretetT. Proposition 1.3.1En AOA, si deux portefeuilles autofinançantsXetYont même valeur en

T, ils ont même valeur en 0 :

T=YT)X0=Y0:

Démonstration.SupposonsX0< Y0et proposons la stratégie suivante : A l"instantt= 0, achat deX, vente deYet placement deY0X0>0à la banque. La valeur du portefeuille à

l"instantt=TestXTYTplus ce qu"a rapporté l"argent à la banque, qui est toujours>0.en 0enTAchat de XX

TVente de YY0YTPlacement du gain à la banqueY

0X0>0(Y0X0)=B(0;T)>0Valeur0>0Donc AOA impliqueX0Y0et, de manière similaire, on obtientX0Y0si bien que

0=Y0.2

Remarque 1.3.1Pour créer un arbitrage, on a acheté le moins cher et vendu le plus cher. Etant donné qu"ils ont même valeur enT, l"opération fournit un gain positif. Proposition 1.3.2En AOA, si deux portefeuilles autofinançantsXetYont même valeur en T, ils ont presque sûrement même valeur en tout instanttT.

T=YT)Xt=Ytpour touttTPp:s:

Ce résultat est une conséquence directe de la proposition suivante. Proposition 1.3.3En AOA, considérons deux portefeuilles autofinançantsXetY, alors :

TYT)XtYtpour touttTPp:s:

8CHAPITRE 1. NOTION D"ARBITRAGE

Démonstration.SoittT. Proposons la stratégie suivante : en 0 : je ne fais rien.quotesdbs_dbs7.pdfusesText_5
[PDF] methodes de valorisation des stocks - AUNEGE

[PDF] circulaire temps partiel 2016-2017

[PDF] Aire totale des prismes

[PDF] notice explicative calcul des surfaces de plancher - Canohes

[PDF] Aire des polygones - Sylvain Lacroix

[PDF] Aire d 'un quadrilatère quelconque - Numdam

[PDF] SCM : Et si l 'on reparlait de gestion de stocks - Supply Chain

[PDF] Taille optimale de l 'équipe commerciale - MemoPage

[PDF] modalités de calcul des tarifs de péage au sein des - Asecap

[PDF] Calcul du taux d 'absentéisme - csmota

[PDF] Comment calculer le taux d 'évolution global de plusieurs - Euler

[PDF] Mesure et contrôle des impayés Calcul et fixation de taux d 'intérêt

[PDF] Accueil de jeunes enfants - Caf

[PDF] La prestation de service unique Mode d 'emploi - Gisti

[PDF] La recombinaison homologue - UPMC