[PDF] [PDF] REPRÉSENTATIONS PARAMÉTRIQUES ET - maths et tiques

Ce système s'appelle une représentation paramétrique de la droite d Démonstration : Le point appartient à P donc ses coordonnées vérifient l' équation : 3 × (−1) − 3 1) Démontrer que la droite ( ) et le plan P sont sécants



Previous PDF Next PDF





[PDF] REPRÉSENTATIONS PARAMÉTRIQUES ET - maths et tiques

Ce système s'appelle une représentation paramétrique de la droite d Démonstration : Le point appartient à P donc ses coordonnées vérifient l' équation : 3 × (−1) − 3 1) Démontrer que la droite ( ) et le plan P sont sécants



[PDF] Plans dans lespace (représentations paramétriques ou équations

Le point B appartient au plan P si ses coordonnées vérifient le système de Pour montrer qu'une droite est perpendiculaire (ou orthogonale) à un plan, il suffit 



[PDF] Chapitre 14 : Equations paramétriques et cartésiennes

Un point ( ; ; ) appartient à la droite si et seulement s'il existe un réel Remarque 2 : Une droite a une infinité de représentation paramétrique A l'aide du produit scalaire, nous pouvons démontrer la propriété suivante :



[PDF] Sujet du bac S Mathématiques Obligatoire 2017 - Freemathsfr

1) Vérifier que le point A(2 ; 3 ; 0) appartient à la droite d1 2) Donner un point B(3 ; 3 ; 5) a) Donner une représentation paramétrique de cette droite ∆



[PDF] Géométrie dans lespace Représentation paramétrique - Jaicompris

2) Déterminer une représentation paramétrique de la droite (DI) L'espace est 1 ) Démontrer que le point M appartient au plan (ACD) sans utiliser de rep`ere



[PDF] TS Contrôle 8 - Correction EX 1 : ( 5 points ) Lespace est muni dun

admet que la droite D a pour représentation paramétrique : x = 1+t y = −3+2t z = t ,t ∈ R a Montrer que le point I appartient à la droite D Le point de 



[PDF] Representation parametrique droite geometrie espace - E-monsite

Exercice 1 : représentation paramétrique d'une droite connaissant un point et un vecteur directeur • Exercice 2 Comme ce point appartient à ( ), ses coordonnées en vérifient le système 1) Démontrer que les droites ( ) et ( ) sont sécantes



[PDF] FICHE DE RÉVISION DU BAC - Studyrama

Caractérisations vectorielles et représentations paramétriques 3 Intersections Caractérisation d'une droite par un point et un vecteur directeur dans le plan : M appartient à la droite donc ses coordonnées vérifient l'équation cartésienne



[PDF] Méthodes de géométrie dans lespace Déterminer une équation

zyx Représentation paramétrique de droites On a besoin du vecteur directeur de la droite et d'un point de la droite On a alors : Un point M(x ;y ;z) appartient à 

[PDF] montrer qu'un point appartient a une droite dans l'espace

[PDF] montrer qu'un quadrilatère est un parallélogramme

[PDF] montrer qu'un triangle est rectangle avec les nombres complexes

[PDF] montrer qu'un triangle est rectangle repère orthonormé

[PDF] montrer qu'une courbe admet un centre de symétrie

[PDF] montrer qu'une courbe admet une asymptote oblique

[PDF] montrer qu'une droite et un plan sont sécants

[PDF] montrer qu'une equation admet une solution unique

[PDF] montrer qu'une fonction admet un maximum

[PDF] montrer qu'une fonction admet un point fixe

[PDF] montrer qu'une fonction est convexe

[PDF] montrer qu'une fonction est dérivable sur un intervalle

[PDF] montrer qu'une fonction est majorée

[PDF] montrer qu'une matrice est diagonalisable

[PDF] montrer qu'une matrice est inversible et calculer son inverse

1

REPRÉSENTATIONS PARAMÉTRIQUES

ET ÉQUATIONS CARTÉSIENNES

Le cours en vidéo : https://youtu.be/naOM6YG6DJc Partie 1 : Représentation paramétrique d'une droite Propriété : L'espace est muni d'un repère !;⃗,⃗, Soit une droite passant par un point et de vecteur directeur ⃗

On a :

∈⟺ Il existe un réel tel que Ce système s'appelle une représentation paramétrique de la droite .

Démonstration :

∈⟺ ⃗ et sont colinéaires ⟺Il existe un réel tel que

Exemple :

La droite passant par le point

1 -2 3 et de vecteur directeur ⃗ 4 5 -3 a pour représentation paramétrique : =1+4 =-2+5 =3-3 Méthode : Utiliser la représentation paramétrique d'une droite

Vidéo https://youtu.be/smCUbzJs9xo

Soit les points

2 3 -1 et 1 -3 2

Déterminer les coordonnées du point d'intersection de la droite () avec le plan de repère

2

Correction

- On commence par déterminer une représentation paramétrique de la droite () : Un vecteur directeur de () est : 1-2 -3-3 2- -1 -1 -6 3 La droite () passe par le point 2 3 -1 Une représentation paramétrique de () est : =2- =3-6 =-1+3 - Soit le point d'intersection de la droite () avec le plan de repère Alors =0 car appartient au plan de repère

Donc -1+3=0 soit =

Et donc :

=2- 1 3 5 3 =3-6× 1 3 =1 =0

Le point a donc pour coordonnées Q

5 3 1 0 R.

Partie 2 : Équation cartésienne d'un plan

Propriété : L'espace est muni d'un repère orthonormé !;⃗,⃗,

Un plan de vecteur normal ⃗ non nul admet une équation de la forme +++=0, avec ∈ℝ.

Réciproquement, si , et sont non tous nuls, l'ensemble des points

tels que +++=0, avec ∈ℝ, est un plan. Cette équation s'appelle équation cartésienne du plan .

Démonstration au programme :

Vidéo https://youtu.be/GKsHtrImI_o

- Soit un point de . et ⃗ sont orthogonaux .⃗=0 =0 3 =0 ⟺+++=0 avec =-

- Réciproquement, supposons par exemple que ≠0 (, et sont non tous nuls).

On note E l'ensemble des points

vérifiant l'équation +++=0

Alors le point Q

0 0 R vérifie l'équation +++=0. Et donc ∈E.

Soit un vecteur ⃗

. Pour tout point , on a : .⃗=V+

W+

-0 -0

E est donc l'ensemble des points

tels que .⃗=0. Donc l'ensemble E est le plan passant par et de vecteur normal ⃗.

Exemple : Le plan d'équation cartésienne -+5+1=0 a pour vecteur normal ⃗

1 -1 5 Méthode : Déterminer une équation cartésienne de plan

Vidéo https://youtu.be/s4xqI6IPQBY

Dans un repère orthonormé, déterminer une équation cartésienne du plan passant par le

point -1 2 1 et de vecteur normal ⃗ 3 -3 1

Correction

Une équation cartésienne de est de la forme 3-3++=0. Le point appartient à donc ses coordonnées vérifient l'équation : 3× -1 -3×2+1+=0 donc =8. Une équation cartésienne de est donc : 3-3++8=0. Propriété : Deux plans sont perpendiculaires lorsqu'un vecteur normal de l'un est orthogonal

à un vecteur normal de l'autre.

4 Méthode : Démontrer que deux plans sont perpendiculaires

Vidéo https://youtu.be/okvo1SUtHUc

Dans un repère orthonormé, les plans et ′ ont pour équations respectives :

2+4+4-3=0 et 2-5+4-1=0.

Démontrer que les plans et ′ sont perpendiculaires.

Correction

Les plans et ′sont perpendiculaires si et seulement si un vecteur normal de l'un est

orthogonal à un vecteur normal de l'autre. Un vecteur normal de est ⃗ 2 4 4 et un vecteur normal de ′est ′ 2 -5 4 =2×2+4× -5 +4×4=0

Les vecteurs ⃗ et ′

sont orthogonaux donc les plans et ′sont perpendiculaires.

Partie 3 : Applications

Méthode : Déterminer l'intersection d'une droite et d'un plan

Vidéo https://youtu.be/BYBMauyizhE

Dans un repère orthonormé, le plan a pour équation 2-+3-2=0.

Soit

1 2 -3 et -1 2 0 a) Démontrer que la droite () et le plan sont sécants. b) Déterminer leur point d'intersection.

Correction

a) Un vecteur normal de est ⃗ 2 -1 3 () et sont sécants si ⃗ et ne sont pas orthogonaux.

On a :

-2 0 3

Comme :

.⃗=-2×2+3×3≠0, on conclut que () et le plan ne sont pas

parallèles et donc sont sécants. b) Une représentation paramétrique de la droite () est : =1-2 =2 =-3+3 5

Le point

, intersection de () et de , vérifie donc le système suivant : Z =1-2 =2 =-3+3

2-+3-2=0

On a donc : 2

1-2

-2+3 -3+3 -2=0

5-11=0 soit =

D'où :

=1-2× 11 5 17 5 =2 =-3+3× 11 5 18 5 Ainsi la droite () et le plan sont sécants en 17 5 2 18 5 Méthode : Déterminer les coordonnées du projeté orthogonal d'un point sur une droite

Vidéo https://youtu.be/RoacrySlUAU

Dans un repère orthonormé, on donne les points 1 0 2 -1 2 1 et 0 1 -2

Déterminer les coordonnées du projeté orthogonal du point sur la droite ().

Correction

On appelle le projeté orthogonal du point sur la droite ().

On a :

-2 2 -1 Une représentation paramétrique de () est : =1-2 =2 =2-

Le point appartient à la droite () donc ses coordonnées vérifient les équations du

système paramétrique de ().

On a ainsi :

1-2

2

2-

et donc

1-2

2-1

2-+2

1-2

2-1

4-

Or,

et sont othogonaux, donc : =0

1-2

-2

2-1

×2+

4-

-1 =0 -2+4+4-2-4+=0

9-8=0

6 8 9

Le point , projeté orthogonal du point sur la droite (), a donc pour coordonnées :

1-2×

8 9 2× 8 9 2- 8 9 7 9 16 9 10 9 Méthode : Déterminer l'intersection de deux plans - NON EXIGIBLE -

Vidéo https://youtu.be/4dkZ0OQQwaQ

Dans un repère orthonormé, les plans et ′ ont pour équations respectives :

-+2+-5=0 et 2-+3-1=0.

1) Démontrer que les plans ′ sont sécants.

2) Déterminer une représentation paramétrique de leur droite d'intersection .

Correction

1) et′ sont sécants si leurs vecteurs normaux ne sont pas colinéaires.

Un vecteur normal de est ⃗ -1 2 1 et un vecteur normal de ′est ′ 2 -1 3 Les coordonnées des deux vecteurs ne sont pas proportionnelles donc les vecteurs ne sont pas colinéaires.

2) Le point

de , intersection de et de ′, vérifie donc le système suivant : i -+2+-5=0

2-+3-1=0

On choisit par exemple comme paramètre et on pose =. On a alors : -+2+-5=0

2-+3-1=0

=-2++5 -+3=1-2 =-2++5 -+3 -2++5 =1-2 =-2++5 --6+3+15=1-2 =-2++5 -7=-14-5 =2+ 5 7 =-2 V 2+ 5 7 W ++5 =2+ 5 7 =1- 3 7 Ce dernier système est une représentation paramétrique de , avec ∈ℝ. 7 RÉSUMÉ : Pour démontrer des positions relatives droite de vecteur directeur ⃗. plan de vecteur normal ⃗. et sont... parallèles ⃗.⃗=0 sécants orthogonaux ⃗ et ⃗ colinéaires plan de vecteur normal plan de vecteur normal et sont... parallèles ⃗ et ⃗ colinéaires sécants ⃗ et ⃗ non colinéaires perpendiculaires ⃗=0quotesdbs_dbs47.pdfusesText_47