[PDF] [PDF] L3 intervalles de confiance - UFR SEGMI

PLPSTA02 Bases de la statistique inférentielle CORRIGE DES EXERCICES : Estimation ponctuelle et estimation par intervalle Exercice 1 P={étudiants}



Previous PDF Next PDF





[PDF] Estimation et tests statistiques, TD 5 Solutions

c) Donner un intervalle de confiance au niveau 95 , puis 98 , de la masse moyenne m d'un oeuf d) Tester si la moyenne de cette variable est égale `a 56



[PDF] T D n 5 Intervalles de confiance Corrigé

Intervalles de confiance Corrigé Exercice 1 Les billes métalliques 1 On calcule la moyenne ̂µ de l'échantillon : ̂µ = 20 Calculons la variance corrigée puis 



[PDF] Examen final corrigé (janvier 2013)

2 3) Donner une estimation de cette proportion par un intervalle de confiance à 90 2 4) Si avec les mêmes données on calculait un intervalle de confiance à 



[PDF] EXERCICE CORRIGÉ TYPE : INTERVALLE DE CONFIANCE On

EXERCICE CORRIGÉ TYPE : INTERVALLE DE CONFIANCE On commence par rappeler le théorème de la limite centrale Théoreme 1 (limite centrale)



[PDF] L3 intervalles de confiance - UFR SEGMI

PLPSTA02 Bases de la statistique inférentielle CORRIGE DES EXERCICES : Estimation ponctuelle et estimation par intervalle Exercice 1 P={étudiants}



[PDF] T D n 5 Intervalles de confiance Corrigé

Intervalles de confiance Corrigé Exercice 1 Les billes métalliques 1 On calcule la moyenne ̂µ de l'échantillon : ̂µ = 20 Calculons la variance corrigée puis 



[PDF] T D n 5 Intervalles de confiance

Exercice 1 Intervalle de confiance pour une espérance, pages 246, 247, 248 Le professeur corrige un échantillon de 7 copies et trouve une moyenne de 11



[PDF] Intervalle de confiance : Exercices Corrigés en vidéo avec le cours

Sondage et intervalle de confiance Lors d'un sondage portant sur 100 personnes, 52 personnes indiquent qu'elles voteront pour Lotfi 1 Déterminer un  



[PDF] 1 Intervalle de confiance 2 Exercices - Maths ECE

Corrigé Statistiques inférentielle par par Pierre Veuillez 1 Intervalle de confiance Exercice Déterminer une valeur approchée de la loi de la moyenne 



[PDF] Feuille 5 : Intervalles de confiance - Université de Nantes

Feuille 5 : Intervalles de confiance Exercice 1 Soit X1, ,Xn un n-échantillon suivant une loi normale de moyenne µ et de variance σ2 On suppose qu'aucun des 

[PDF] exercice corrigé sur l'amplificateur opérationnel

[PDF] exercice corrigé sur l'electrostatique

[PDF] exercice corrigé sur la diode

[PDF] exercice corrigé sur la diode zener

[PDF] exercice corrigé sur la fonction de consommation keynésienne

[PDF] exercice corrigé sur la loi normale centrée réduite

[PDF] exercice corrigé sur la machine synchrone

[PDF] exercice corrigé sur la mécanique des fluides

[PDF] exercice corrigé sur la regression linéaire

[PDF] exercice corrigé sur la regression multiple

[PDF] exercice corrigé sur le barycentre

[PDF] exercice corrigé sur le bilan comptable

[PDF] exercice corrigé sur le bilan en comptabilité

[PDF] exercice corrigé sur le bilan hydrique

[PDF] exercice corrigé sur le champ electrostatique

U.F.R. S.P.S.E.UNIVERSITE PARIS X NANTERRE

Licence de psychologie L3

PLPSTA02 Bases de la statistique inférentielle

CORRIGE DES EXERCICES : Estimation ponctuelle et estimation par intervalle

Exercice 1

P={étudiants}

X= résultat au test de QI, variable quantitative de moyenne inconnue et d'écart-type =13 connu dans

P

Echantillon de X issu de P de taille n=30 sur lequel on observe 111x qui est l'estimation ponctuelle de la moyenne

inconnue .

1) X suit une loi

N(, =13) donc quel que soit n,

n

X suit une loi normale

n13 n,µ N; pour n=30

3723013

n, - l'estimation par intervalle de confiance au niveau 95% (au risque =5%) de dans P s'écrit : >@>@>@71153106741113729611113013z111nzxIC

97509750

95,;,,,,

où z 1(/2) = z 0,975 = 1,96 est le quantile d'ordre 0,975 de la loi N(0,1).

l'estimation par intervalle de confiance au niveau 95% du résultat moyen des étudiants est d'environ 106,3 à 115,7 ; la

précision (ou marge d'erreur) de l'estimation à 95% est d'environ 4,7. - l'estimation par intervalle de confiance au niveau 90% (au risque =10%) de dans

P s'écrit :

>@>@>@911411079311137264511113013z111nzxIC

95095090

où z 1(/2) = z 0,95 =1,645 est le quantile d'ordre 0,95 de la loi N(0,1).

l'estimation par intervalle de confiance au niveau 90% du résultat moyen des étudiants est d'environ 107,1 à 114,9 ; la

précision (ou marge d'erreur) de l'estimation à 90% est d'environ 3,9. - l'estimation par intervalle de confiance au niveau 99% (au risque =1%) de dans

P s'écrit :

>@>@>@111791041611137257521113013z111nzxIC

9950995099

où z 1(/2) = z 0,995 = 2,575 est le quantile d'ordre 0,995 de la loi N(0,1).

l'estimation par intervalle de confiance au niveau 99% du résultat moyen des étudiants est d'environ 104,9 à 117,1 ; la

précision (ou marge d'erreur) de l'estimation à 99% est d'environ 6,1. remarque : IC99% () contient IC 95%
() qui contient IC 90%

2) Pour n=50 83815013

n,: - l'estimation par intervalle de confiance au niveau 95% (au risque =5%) de dans

P s'écrit :

>@>@>@611441076311183819611115013z111IC

975095

,% où z 1(/2) = z 0,975 = 1,96 est le quantile d'ordre 0,975 de la loi N(0,1). - l'estimation par intervalle de confiance au niveau 90% (au risque =10%) de dans

P s'écrit :

>@>@>@1141083111838164511115013z111IC 95090
où z 1(/2) = z0,95 =1,645 est le quantile d'ordre 0,95 de la loi N(0,1). - l'estimation par intervalle de confiance au niveau 99% (au risque =1%) de dans

P s'écrit :

>@>@>@7115310674111838157521115013z111IC

995099

où z 1(/2) = z 0,995 = 2,575 est le quantile d'ordre 0,995 de la loi N(0,1).

2 Pour n=100

3110013

n,: - l'estimation par intervalle de confiance au niveau 95% (au risque =5%) de dans

P s'écrit :

>@>@>@51135108521113196111110013z111IC

975095

où z 1(/2) = z 0,975 = 1,96 est le quantile d'ordre 0,975 de la loi N(0,1). - l'estimation par intervalle de confiance au niveau 90% (au risque =10%) de dans

P s'écrit :

>@>@>@111391081211131645111110013z111IC 95090
où z 1(/2) = z 0,95 =1,645 est le quantile d'ordre 0,95 de la loi N(0,1). - l'estimation par intervalle de confiance au niveau 99% (au risque =1%) de dans

P s'écrit :

>@>@>@311471073311131575211110013z111IC

995099

où z 1(/2) = z 0,995 = 2,575 est le quantile d'ordre 0,995 de la loi N(0,1).

remarque : plus la taille n augmente plus les intervalles de confiance pour un même niveau de confiance sont étroits

(meilleure précision).

3) La demi-longueur de l'intervalle IC

95%
(), correspondant à la marge d'erreur dans l'estimation du résultat moyen à 95%,

est de 2,5 pour un échantillon de taille n=100 ; pour obtenir une marge d'erreur (demi-longueur) plus faible, égale à 1, il

faudra augmenter la taille de l'échantillon n. Pour n inconnu, =13 et =5% connus, la demi-longueur de l'intervalle

IC 95%
() s'écrit : n1396,1nz 975,0
on cherche n tel que : 1n1396,1 c'est à dire n1396,1 d'où 23,6491396,1n 2

on choisira donc une taille d'échantillon au moins égale à 650 pour que demi-longueur de l'intervalle de confiance à

95% (la marge d'erreur dans l'estimation du résultat moyen à 95%) soit inférieure à 1.

Exercice 2

P={enfants fréquentant la maternelle}

X= score au test de Pensée Créative de Torrance, variable quantitative de moyenne et d'écart-type inconnus dans

P

Echantillon de X issu de P de taille n=30

1) L'estimation ponctuelle du score moyen est donnée par la moyenne observée

32130639x,

le score moyen des enfants de maternelle est estimé à 21,3 (points de score).

2) L'estimation ponctuelle sans biais de la variance ² est donnée par la variance observée sans biais :

25372931080

293213069114s

22
(autre calcul : 01363213069114s 22
,, et 253701360341s2930s 22

l'estimation ponctuelle sans biais de l'écart-type est donnée par l'écart-type observé sans biais

162537s,,*

la variance du score des enfants de maternelle est estimée à 37,25 et son écart-type à 6,1 (points de score).

3) La loi de X étant quelconque et n=3030,

n

X suit approximativement une loi normale

n ,N et est estimé par s*. L'estimation par intervalle de confiance au niveau 95% (au risque =5%) de dans

P s'écrit :

>@>@5231191823213016961321nszxIC

975095

où z 1(/2) = z 0,975 = 1,96 est le quantile d'ordre 0,975 de la loi N(0,1).

l'estimation par intervalle de confiance au niveau 95% du score moyen des enfants de maternelle est d'environ 19,1 à

23,5 (points de score) ; la précision (ou marge d'erreur) de l'estimation à 95% est d'environ 2,2 (points de score).

3Exercice 3

P={individus âgés de 20 à 30 ans}

X= temps nécessaire pour reproduire 16 modèles (mesuré en secondes), variable quantitative de moyenne et d'écart-type

inconnus dans P

Echantillon de X issu de P de taille n=60

1) L'estimation ponctuelle du temps moyen est donnée par la moyenne observée

94006005624x, secondes

le temps moyen des individus âgés de 20 à 30 ans est estimé à 400,9 secondes.

2) L'estimation ponctuelle sans biais de la variance ² est donnée par la variance observée sans biais :

5345105994006063225310s

22
(autre calcul : 061731094006063225310s 22
,, et 534510061731001691s5960s 22

l'estimation ponctuelle sans biais de l'écart-type est donnée par l'écart-type observé sans biais

7101534510s,,*

secondes

la variance du temps des individus âgés de 20 à 30 ans est estimée à 10 345,5 et son écart-type à 101,7 secondes.

3) Estimation par intervalle de confiance au niveau 1 ou au risque du temps moyen dans

P :

La loi de X étant quelconque et n=6030,

n

X suit approximativement une loi normale

n ,N et inconnu est estimé par s* d'où : ur| r r|P

DDDD1313z9400607101z9400nszxIC

2121211

- Pour 1 = 90% =10% z 1(/2) = z 0,95 = 1,645 quantile d'ordre 0,95 de la loi N(0,1) >@>@54223379621940060710164519400IC 90
- Pour 1 = 95% =5% z 1(/2) = z 0,975 = 1,96 quantile d'ordre 0,975 de la loi N(0,1) >@>@6426237572594006071019619400IC 95
- Pour 1 = 99% =1% z 1(/2) = z 0,995 = 2,575 quantile d'ordre 0,995 de la loi N(0,1) >@>@74341367833940060710157529400IC 99
remarque : IC 99%
() contient IC 95%
() qui contient IC 90%

Exercice 4

P={étudiants d'une promotion} X= temps de mémorisation d'un texte (mesuré en mn), variable quantitative de moyenne

et d'écart-type inconnus dans P Echantillon de X issu de P de taille n=37 pour lequel 25x et s=5

La loi de X étant quelconque et n=3730,

n

X suit approximativement une loi normale

n ,N. Le temps moyen inconnu est estimé par la moyenne observée

25xmn et l'écart-type du temps inconnu est estimé

par l'écart-type observé sans biais

07553637s3637s,*mn

L'intervalle de confiance au risque =5% (au niveau 95%) du temps moyen dans

P s'écrit :

>@>@>@62642361258340961253707596125nszxIC

975095

où z 1(/2) = z 0,975 = 1,96 est le quantile d'ordre 0,975 de la loi N(0,1).

l'estimation par intervalle de confiance au risque 5% (au niveau 95%) du temps moyen de mémorisation d'un texte

par les étudiants d'une promotion est d'environ 24,3 à 26,6 mn ; la précision (ou marge d'erreur) de l'estimation au

risque 5% (à 95%) est d'environ 1,6 mn.

4Exercice 5

P={sujets} X= temps de parcours d'un labyrinthe (mesuré en mn), variable quantitative de moyenne et d'écart-type

inconnus dans P Echantillon de X issu de P de taille n=100 pour lequel 768x, et s*=2,3

1) L'estimation ponctuelle du temps de parcours moyen est donnée par la moyenne observée

768x, mn

le temps moyen de parcours du labyrinthe des sujets est estimé à 8,76 mn.

2) La loi de X étant quelconque et n=10030,

n

X suit approximativement une loi normale

n ,N et l'écart-type du temps inconnu est estimé par l'écart-type observé sans biais s*=2,3 mn L'intervalle de confiance au niveau 90% (au risque =10%) du temps moyen dans

P s'écrit :

>@>@>@149388380768230645176810032z768IC 95090
où z 1(/2) = z 0,95 = 1,645 est le quantile d'ordre 0,95 de la loi N(0,1).

l'estimation par intervalle de confiance au niveau 90% du temps moyen de parcours d'un labyrinthe des sujets est

d'environ 8,38 à 9,14 mn ; la précision (ou marge d'erreur) de l'estimation à 90% est d'environ 0,38 mn.

3) La marge d'erreur dans l'estimation du temps moyen à 90%, donnée par la demi-longueur de l'intervalle IC

90%
(), est de

0,38 mn pour un échantillon de taille n=100 ; pour obtenir une marge d'erreur (demi-longueur) plus faible, de 0,3 mn, il

faudra augmenter la taille de l'échantillon n. Pour n inconnu, =s*=2,3 et =10% connus, la demi-longueur de

l'intervalle IC 90%
() s'écrit : n326451nsz 950
on cherche n tel que : 30n326451,,, c'est à dire n30326451 ,,, d'où 0515930326451n 2

on choisira donc une taille d'échantillon au moins égale à 160 pour que la marge d'erreur dans l'estimation du temps

moyen à 90% soit inférieure à 0,3 mn.

Exercice 6

P={handicapés mentaux}

X= résultat à un test de dextérité manuelle, variable quantitative de moyenne et d'écart-type inconnus dans

P

Echantillon de X issu de P de taille n=32

La loi de X étant quelconque et n=3230,

n

X suit approximativement une loi normale

n ,N. Le résultat moyen inconnu est estimé par la moyenne observée

71322272x et l'écart-type du résultat inconnu

est estimé par l'écart-type observé sans biais s* où

3511317132664161s

22
,* et 3733511s,,* (autre calcul : 117132664161s 22
et 35111103231s3132s 22
L'intervalle de confiance à 99% (au risque =1%) du résultat moyen dans

P s'écrit :

>@>@>@5725695171596057527132373z71IC

995099

où z 1(/2) = z 0,995 = 2,575 est le quantile d'ordre 0,995 de la loi N(0,1).

l'estimation par intervalle de confiance au niveau 99% du résultat moyen des handicapés mentaux est d'environ 69,5

à 72,5 ; la précision (ou marge d'erreur) de l'estimation à 99% est d'environ 1,5.

Exercice 7

P={nouveaux-nés prématurés (nés avant 30 semaines de gestation)} X= score d'Apgar à 5 mn, variable quantitative de moyenne et d'écart-type inconnus dans P

Echantillon de X issu de P de taille n=70

1) L'estimation ponctuelle de est donnée par la moyenne observée

1,870567x

le score d'Apgar moyen des nouveaux-nés prématurés est estimé à 8,1.

52) L'estimation ponctuelle sans biais de la variance ² est donnée par la variance observée sans biais

25,3693,224

691,8704817*s

22

l'estimation ponctuelle sans biais de l'écart-type est donnée par l'écart-type observé sans biais 8,125,3*s

quotesdbs_dbs20.pdfusesText_26