[PDF] [PDF] Exercices corrigés - Guilhem Mollon

Polytech Grenoble, Geo3 3 Corrigés Exercice A Soit un tenseur symétrique Dans la base omposant le barrage est supposé élastique linéaire et isotrope



Previous PDF Next PDF





[PDF] Exercice 1 :

Représentation de la surface de von Mises dans l'état des contraintes principales Page 16 TD3 : MATERIAUX ELASTIQUES Matériau isotrope élastique linéaire



[PDF] Exercices corrigés - Guilhem Mollon

Polytech Grenoble, Geo3 3 Corrigés Exercice A Soit un tenseur symétrique Dans la base omposant le barrage est supposé élastique linéaire et isotrope



[PDF] M´ECANIQUE DES MILIEUX CONTINUS - Mines Saint-Etienne

20 fév 2004 · 1 5 Exercices 4 3 4 Thermo-élasticité linéaire 68 poth` ese d'une loi de comportement élastique linéaire du matériau



[PDF] ÉLASTICITÉ - ORBi

Les équations de l'élasticité linéaire sont établies au chapitre 4 En ce qui concerne la De nombreux exercices sont inclus Parmi ceux-ci, certains sont de 



[PDF] Résistance des matériaux : élasticité, méthodes - IUT Le Mans

20 jui 2011 · 1 Élasticité 1 4 2 5 Exercice : contraintes et énergie de déformation comportement du matériau est élastique et linéaire, l'énergie de 



[PDF] ANNALES CORRIG´EES ET COMPL´EMENTS du - Olivier THUAL

15 déc 2006 · nus en amont des cours d'élasticité et de mécanique des fluides Comprendre linéaire et des fluides newtoniens permet de conclure en écrivant les équations On y trouve, par exemple, le texte du livre corrigé des errata connus, tain nombre d'exercices que les étudiants sont encouragés `a travailler



[PDF] Elasticité MMC_Page de garde - ISET Gafsa

à rédiger un support de cours pour le module « Elasticité- L'allongement ( dilatation linéaire) d'un vecteur dX dX N = uuur uur [4] Fatima Sahban et Amar Kifani, Mécanique des milieux continus - Cours et exercices corrigés Tome 1 



[PDF] Exercices résolus

MMC – Exercices résolus Etat des EXERCICE 1 Un milieu élastique homogène et isotrope subit un changement de configuration plan décrit dans deux



[PDF] Banque publique dexercices - PédagoTech de Toulouse INP

9 sept 2018 · 4) Calculer ses directions propres Corrigé Tenseur des contraintes 1)La force d'un matériau élastique linéaire isotrope et on note λ et µ ses 

[PDF] élasticité linéaire isotrope

[PDF] élasticité logarithme

[PDF] elasticité mercatique calcul

[PDF] élasticité prix de l'offre calcul

[PDF] élasticité prix de l'offre definition

[PDF] elasticité prix de la demande monopole

[PDF] électifs sciences po

[PDF] election parents d'élèves 2016 2017

[PDF] election parents d'élèves 2017 2018

[PDF] election parents d'élèves 2018

[PDF] election primaire 2016

[PDF] election representants des parents d'eleves 2017

[PDF] elections au conseil d'administration des eple

[PDF] élections des représentants de parents d'élèves 2017 2018

[PDF] elections des représentants des personnels au conseil d'administration 2017

IINNTTRROODDUUCCTT

MMI EExx Département Géotechnique, Troisième année

TTIIOONN AA LLAA MMEECCAANNIIQQUU

MIILLIIEEUUXX CCOONNTTIINNUUSS

xxeerrcciicceess ccoorrrriiggééss

Guilhem MOLLON

Polytech Grenoble

Département Géotechnique, Troisième année

Edition 1, 2012-2013

UUEE DDEESS

Département Géotechnique, Troisième année V1.07

Mécanique des Milieux Continus

Exercice A. Montrer que la symétrie est une propriété tensorielle, c'est tenseur ݒ̿ est symétrique (ݒ௹௺ alors cette propriété est également vraie dans toute autre base orthonormée

Exercice B.

Montrer que l'antisymétrie est également une propriété tensorielle.

Exercice C.

Montrer qu'un tenseur

partie symétrique et une partie antisymétrique.

Exercice D.

Soit ݒ̿ un tenseur

l'on a toujours ݒ̿:݀̿൩ 0.

Exercice E.

Soit ݒ̿ un tenseur symétrique et

a toujours : ݒ̿:ݓൄ൩ ݒ̿:ݓൄ௩, où

Exercice F.

Soit ݀Ճ un champ vectoriel. Montrer que l'on a toujours

Exercice G.

Soit ݀ un champ scalaire. Montrer que l'on a toujours

Exercice H.

Soit la base curviligne polaire

1. Calculer la surface extérieure d'une sphère de rayon surface infinitésimal peut s'écrire

2. Calculer l'intégrale du champ

élémentaire dans la direction radiale vaut

Mécanique des Milieux Continus Polytech Grenoble, Geo3 2 Montrer que la symétrie est une propriété tensorielle, c'est ௹௺൩ ݒ௺௹) dans une base orthonormée donné alors cette propriété est également vraie dans toute autre base orthonormée Montrer que l'antisymétrie est également une propriété tensorielle. Montrer qu'un tenseur ݓൄ quelconque peut toujours se décompose partie symétrique et une partie antisymétrique. un tenseur symétrique et ݀̿ un tenseur antisymétrique, montrer que un tenseur symétrique et ݓൄ un tenseur quelconque, montrer que l'on ൄ, où ݓൄ௩ est la partie symétrique de ݓൄ. un champ vectoriel. Montrer que l'on a toujours ݝݢݯ un champ scalaire. Montrer que l'on a toujours ݫݨݭ቉቉቉቉቉ Calculer la surface extérieure d'une sphère de rayon ݑ, sachant qu'un élément de surface infinitésimal peut s'écrire ݝݒ ൩ ݑ୓ݬݢݧࠋݝ߽

Calculer l'intégrale du champ ݜݨݬࠋ ∙ ݞ௨቉቉቉቉Ճ sur cette sphère, sachant que le vecteur

élémentaire dans la direction radiale vaut ݞ௨቉቉቉቉Ճ൩ ݬݢݧࠋݜݨݬ߽ݞఈ቉቉቉Ճൢݬݢݧࠋݬݢݧ߽

Polytech Grenoble, Geo3

Montrer que la symétrie est une propriété tensorielle, c'est-à-dire que si un

) dans une base orthonormée donné ݁ ൩቗ݞ୒቉቉቉Ճ,ݞ୓቉቉቉Ճ,ݞ୔቉቉቉Ճቘ,

alors cette propriété est également vraie dans toute autre base orthonormée ݁′ ൩

Montrer que l'antisymétrie est également une propriété tensorielle. se décomposer en une un tenseur antisymétrique, montrer que un tenseur quelconque, montrer que l'on , sachant qu'un élément de sur cette sphère, sachant que le vecteur Mécanique des Milieux Continus Polytech Grenoble, Geo3 3

Exercice A.

Soit un tenseur ݒ̿ symétrique. Dans la base ݁ ൩቗ݞ

୒቉቉቉ՃǾݞ୓቉቉቉ՃǾݞ୔቉቉቉Ճቘ on peut donc écrire

௹௺൩ ݒ௺௹. Soit une base orthonormée quelconque ݁Կ ൩ቝݞԿ୒቉቉቉቉቉ՃǾݞԿ୓቉቉቉቉቉ՃǾԿݞ୔቉቉቉቉቉Ճ቞ différente de ݁.

௹௺ les termes de la matrice de ݒ̿ dans la base ݁Կ, on a d'après le cours (en notation d'Einstein) : Or la matrice ݒ est symétrique, on a donc ݒ ఀఁ൩ ݒఁఀ. On écrit donc : Les indices ݩ et ݪ du second membre sont muets, on pourrait donc les remplacer par n'importe quelle lettre, et on peut aussi les intervertir :

On en déduit que ݒԿ

௹௺൩ ݒԿ௺௹, ce qu'il fallait démontrer.

Exercice B.

Soit un tenseur ݒ̿ antisymétrique. Dans la base ݁ ൩቗ݞ

୒቉቉቉ՃǾݞ୓቉቉቉ՃǾݞ୔቉቉቉Ճቘ on peut donc écrire

௹௺൩ ൣݒ௺௹. Soit une base orthonormée quelconque ݁Կ ൩ቝݞԿ୒቉቉቉቉቉ՃǾݞԿ୓቉቉቉቉቉ՃǾԿݞ୔቉቉቉቉቉Ճ቞ différente de ݁.

௹௺ les termes de la matrice de ݒ̿ dans la base ݁Կ, on a d'après le cours (en notation d'Einstein) : Or la matrice ݒ est symétrique, on a donc ݒ ఀఁ൩ ൣݒఁఀ. On écrit donc : Les indices ݩ et ݪdu second membre sont muets, on pourrait donc les remplacer par n'importe quelle lettre, et on peut aussi les intervertir :

On en déduit que ݒԿ

௹௺൩ ൣݒԿ௺௹, ce qu'il fallait démontrer. Mécanique des Milieux Continus Polytech Grenoble, Geo3 4

Exercice C.

On reprend les formules du cours. Soient les tenseurs ݓൄ ௩ et ݓൄௗ donnés par les formules suivantes :

On va démontrer que ݓൄ

௩ est symétrique et que ݓൄௗ est antisymétrique. Pour cela on se place dans une base ݁ ൩቗ݞ

୒቉቉቉ՃǾݞ୓቉቉቉ՃǾݞ୔቉቉቉Ճቘ, pour laquelle le tenseur ݓൄ s'exprime sous la forme

d'une matrice de terme générale ݓ ௹௺. Explicitions les termes des matrices de ݓൄ௩ et ݓൄௗ :

On a donc démontré que ݓൄ

௩ est symétrique et ݓൄௗ antisymétrique.

Exercice D.

Dans une base orthonormée ݁ ൩቗ݞ

୒቉቉቉ՃǾݞ୓቉቉቉ՃǾݞ୔቉቉቉Ճቘ, on peut écrire que ݒ௹௺൩ ݒ௺௹ et également

que ݀

௹௺൩ ൣ݀௺௹. On en déduit que, comme pour tout tenseur antisymétrique, les termes

diagonaux de la matrice de ݀̿ sont nuls dans toute base. D'après le cours, le produit doublement contracté de ces deux tenseurs est un scalaire égal à : Développons cette notation d'Einstein sous forme explicite :

On sait que l'on a ݀

Mécanique des Milieux Continus Polytech Grenoble, Geo3 5

Exercice E.

Le résultat découle directement de celui de l'exercice précédent et de la distributivité

de l'opérateur produit doublement contracté :

Exercice F.

Posons le résultat intermédiaire ݁቉

Ճ൩ ݫݨݭ቉቉቉቉቉቉Ճ݀Ճ. Dans une base orthonormée donnée

୒቉቉቉ՃǾݞ୓቉቉቉ՃǾݞ୔቉቉቉Ճቘ, on a par définition :

Par ailleurs, on a par définition : ݝݢݯ݁቉ On en déduit que ݝݢݯݫݨݭ቉ ቉቉቉቉቉Ճ݀Ճ vaut : L'ordre des dérivations partielles successives d'une fonction de plusieurs variables est quelconque, on peut donc en déduire directement :ݝݢݯݫݨݭ቉

Exercice G.

On se place également dans une base orthonormée ݁ ൩቗ݞ

୒቉቉቉ՃǾݞ୓቉቉቉ՃǾݞ୔቉቉቉Ճቘ. Soit le résultat

intermédiaire ݁቉ Mécanique des Milieux Continus Polytech Grenoble, Geo3 6 Par ailleurs, on peut écrire, toujours dans la base ݁ ؔ

On en déduit :

Pour la même raison que dans l'exercice précédent, on peut donc écrire directement la formule classique ݫݨݭ቉

Exercice H.

1. Un élément de surface ݝݒ de la sphère de rayon ݑ délimité par deux secteurs

d'angles infinitésimaux ݝ߽

On cherche à calculer ݒ ൩؉

ఃఀ௸Íం௵. En paramétrant la surface en fonction de ߽ on peut expliciter cette intégrale :

Le rayon ݑ est indépendant de ߽ et ࠋ, et le terme ݬݢݧࠋ est indépendant de ߽

donc écrire : Mécanique des Milieux Continus Polytech Grenoble, Geo3 7 Finalement, on obtient le résultat classique ݒ ൩ Γࠅݑ

2. On doit calculer :

Avec : ݞ

On est en coordonnées curvilignes, donc on ne peut pas sortir le vecteur ݞ ௨቉቉቉቉Ճ car il n'est

pas indépendant du point d'intégration (du point de la sphère de surface ݝݒ). En

revanche, les trois vecteurs de la base cartésienne ont cette propriété, et peuvent être sortis de l'intégrale. On peut donc remplacer ݞ ం቉቉቉Ճ par son expression, et écrire dans la base ݁ ൩቗ݞ Du fait de la périodicité des fonctions trigonométriques, on a :

Par ailleurs, on a :

Mécanique des Milieux Continus Polytech Grenoble, Geo3 8

Donc :

La primitive de la fonction ݜݨݬ

୓ࠋݬݢݧࠋ est la fonction ௳௿ఃౌ఺ ୔, donc : Mécanique des Milieux Continus Polytech Grenoble, Geo3 9

Problème. On considère un mouvement défini dans la base ݁ ൩቗ݞ୒቉቉቉ՃǾݞ୓቉቉቉ՃǾݞ୔቉቉቉Ճቘ par sa

représentation lagrangienne (ࠎ est une constante positive) :

1. Calculer le tenseur gradient ݅ൄ, le tenseur des dilatations ݂̿, et le tenseur des

déformations ݄ൄ de ce mouvement au point ݗՃ et à l'instant ݭ.

2. A quelle classe particulière ce mouvement appartient-il ?

3. Pour un instant ݭ donné, calculer la dilatation en un point ݗՃ et dans une direction ݝݗ቉

4. Pour un instant ݭ donné, calculer le glissement en un point ݗՃ et pour deux directions

orthogonales ݝݗ቉ ቉቉቉቉Ճ et ݝݗԿ቉቉቉቉቉቉Ճ.

5. On considère un milieu animé de ce mouvement, muni d'une masse volumique

homogène ࠆ masse volumique du milieu à l'instant ݭ.

6. Calculer le champ de vitesse ݕ቉

coordonnées lagrangiennes.

7. Exprimer les coordonnées initiales à partir des coordonnées actuelles. Calculer le

champ de vitesse ݕ቉ Ճ቗ݱՃǾݭቘ et le champ d'accélération ߸ eulériennes.

8. Calculer les tenseurs des taux de déformations eulériens ݃൅቗ݱՃǾݭቘ et des taux de

rotation ɐ൅቗ݱՃǾݭቘ.

9. On définit les coordonnées polaires lagrangiennes ቗ݑǾɀǾ8

୔ቘ par le changement de variables

୒Ǿݗ୓Ǿ8୔ቘ൩቗ݑ ϋ ݜݨݬɀǾݑ ϋ ݬݢݧɀǾ8୔ቘ et les coordonnées eulériennes

୔ቘ par le changement de variables ቗ݱ୒Ǿݱ୓Ǿ·୔ቘ൩቗ݫ ϋ ݜݨݬ߽Ǿݫ ϋ ݬݢݧ߽

Expliciter les fonctions ݗ

ం et ݗబ définissant une nouvelle représentation lagrangienne du mouvement de la forme : Mécanique des Milieux Continus Polytech Grenoble, Geo3 10 On note alors le champ de vitesse dans cette nouvelle base : Indiquer l'expression des composantes polaires ݕ ం, ݕబ et ݕ୔ du champ de vitesse eulérien.

11. Calculer l'accélération centrifuge ߸

ం቗ݫǾ߽Ǿݭቘ et l'accélération tangentielle ߸బ቗ݫǾ߽

du mouvement étudié.

12. Définir les trajectoires associées à ce mouvement

Examen partiel : Etude cinématique d'un tourbillon.

On considère un mouvement,

défini dans la base orthonormée ݁ ൩቗ݞ

୒቉቉቉ՃǾݞ୓቉቉቉ՃǾݞ୔቉቉቉Ճቘ par la représentation eulérienne

suivante : Dans cette représentation, ݀ est une fonction scalaire des deux coordonnées ݱ ୒ et ݱ୓, définie par l'expression ݀቗ݱ

Ce mouvement est donc uniquement défini pour

1. De quel type de mouvement s'agit-il ?

ൄൄൄൄൄൄݕ቉Ճ dans la base

୒቉቉቉ՃǾݞ୓቉቉቉ՃǾݞ୔቉቉቉Ճቘ s'exprime par :

3. En déduire immédiatement les matrices du tenseur des taux de rotation ɐ൅቗ݱՃǾݭቘ et du

tenseur des taux de déformation eulériens ݃൅቗ݱՃǾݭቘ.

4. On considère un milieu continu de masse volumique ࠆ

animé de ce mouvement. Calculer la divergence du champ de vitesse, et en déduire la Mécanique des Milieux Continus Polytech Grenoble, Geo3 11

5. Montrer que l'accélération ߸

୒Ǿݱ୓Ǿݱ୔Ǿݭቘ en coordonnées eulériennes cartésiennes (c'est-à-dire dans la base ݁ ൩቗ݞ

୒቉቉቉ՃǾݞ୓቉቉቉ՃǾݞ୔቉቉቉Ճቘ) s'exprime par :

6. On définit les coordonnées polaires lagrangiennes ቗ݑǾɀǾ8

୔ቘ par le changement de variables

୒Ǿݗ୓Ǿ8୔ቘ൩቗ݑ ϋ ݜݨݬɀǾݑ ϋ ݬݢݧɀǾ8୔ቘ et les coordonnées eulériennes

୔ቘ par le changement de variables ቗ݱ୒Ǿݱ୓Ǿ·୔ቘ൩቗ݫ ϋ ݜݨݬ߽Ǿݫ ϋ ݬݢݧ߽

On définit également une base curviligne polaire ݁ Calculer l'accélération ߸Ճ቗ݫǾ߽ ୔Ǿݭቘ en coordonnées eulériennes polaires.

7. Exprimer le champ de vitesse en coordonnées eulériennes polaires. En déduire que

les particules ont des trajectoires circulaires autour de l'origine, de vitesse angulaire : Donner sans calcul l'expression de la représentation polaire lagrangienne du mouvement sous la forme ݫ ൩ ݗ ం቗ݑǾɀǾݱ୔Ǿ³ቘ et ߽

8. Démontrer que la représentation lagrangienne du mouvement dans la base

Montrer que, dans cette expression, on a : ࠎ ൩

9. Définir les trajectoires associées à ce mouvement, ainsi que les champs de vitesse et

d'accélération

10. On considère le point de vecteur position ݱՃ ൩ ݫ ϋ ݞ

୓቉቉቉Ճ. Calculer la matrice du tenseur des taux de déformations eulériens en ce point. De quel type de déformation s'agit-il ? En déduire les valeurs propres et les vecteurs propres du tenseur des taux de déformations eulériens en ce point. Mécanique des Milieux Continus Polytech Grenoble, Geo3 12

Problème.

1. Le terme général de la matrice du tenseur gradient dans la base ݁ est ݅

ా௮ೲ, donc on a :

Pour le tenseur des dilatations, on a ݂

௹௺൩ ݅ఀ௹݅ఀ௺ en notation d'Einstein, donc :

Enfin, on sait que ݄ൄ൩

2. Le tenseur des déformations est nul, on est donc en présence d'un mouvement

rigidifiant.

3. Puisque ݂̿൩ ݈̿, on peut dire que toute direction est direction principale. La dilatation

dans une direction quelconque ݝݗ቉

4. Pour la même raison, le glissement entre deux directions orthogonales quelconques

቉቉቉቉Ճ et ݝݗԿ቉቉቉቉቉቉Ճ vaut : ߸

5. Le jacobien de la transformation est le déterminant de ݅ൄ. On a donc :

Par conséquent la masse volumique du milieu est constante dans le temps et en tout point. Mécanique des Milieux Continus Polytech Grenoble, Geo3 13 vecteurs exprimant les positions actuelles des particules : ݕ቉

Donc :

De même, le champ d'accélération s'obtient par ߸ Ces champs s'expriment en fonction de ݗՃ, et sont donc bien en coordonnées lagrangiennes.

7. D'après l'énoncé, les coordonnées actuelles s'obtiennent à partir des coordonnées

initiales par le système suivant : On isole en particulier les deux premières équations de ce système : On cherche à inverser ce système pour exprimer ݗՃ en fonction de ݱՃ. On utilise la formule d'inversion d'une matrice 2*2 : Mécanique des Milieux Continus Polytech Grenoble, Geo3 14

Donc :

Cette matrice est orthogonale, car son inverse est égale à sa transposée. Elle traduit donc une rotation. On en déduit :

Dans l'expression du champ de vitesse et du champ d'accélération calculés à la

question précédente, on peut alors remplacer les coordonnées initiales ݗՃ par leur

expression en fonction des coordonnées actuelles ݱՃ. On obtient la formulation eulérienne suivante : Ce dernier résultat pouvait aussi s'obtenir en passant par la formule donnant directement l'accélération par ߸ Mécanique des Milieux Continus Polytech Grenoble, Geo3 15 cours ాఈೲ. On remarque qu'il s'agit d'un gradient eulérien (g minuscule), donc les dérivations sont effectuées par rapport aux coordonnées actuelles ݱՃ : résultats peuvent être retrouvés par le calcul avec les formules de cours :

9. En coordonnées polaires, on a les correspondances suivantes :

On cherche les expressions des fonctions ݗ

ం et ݗబ. On peut écrire à partir de ces expressions :

2ǿݬݢݧɀ ൩ݗ୓

2

Or on sait d'après l'énoncé que, dans le repère cartésien, le mouvement s'exprime par :

On peut remplacer ݱ

୒ et ݱ୓ par leurs expressions dans la formules donnant ݫ : On en déduit l'expression de la fonction ݗ ం. On effectue la même opération avec l'expression de ݜݨݬɢ : Mécanique des Milieux Continus Polytech Grenoble, Geo3 16 Dans cette dernière expression, on remplace ݗ ୒, ݗ୓ et ݫ par leur expression polaire : 2 On en déduit ɢ ൩ ɀ ൢ ࠎݭ, ce qui nous donne la forme de la fonction ݗ బ. Finalement, on a :

10. On travaille maintenant dans la base curviligne polaire ݁

On cherche à exprimer le champ de vitesse eulérien dans cette base. On a démontré dans la question 7 que le champ de vitesse pouvait s'exprimer par :

Dans cette expression, on remplace ݱ

୒ et ݱ୓ par leurs expressions en coordonnées polaires : donc :

Dans la base ݁

11. Dans le même ordre d'idée, on cherche à exprimer la formulation eulérienne du

champ d'accélération dans la base ݁quotesdbs_dbs14.pdfusesText_20