[PDF] LES SUITES (Partie 1) - Maths & tiques



Previous PDF Next PDF







LEÇON NO Suites définies par récurrence Applications

1 Suites définies par récurrence u n+1 = f(u n) Définitions et propriétés 1 1 Sujet d’étude Nous étudierons les suites récurrentes définies de la manière suivante : Définition 1 1(Suites définies par récurrence u n+1 = f(u n)) Soit fune fonction continue sur un intervalle IˆR à valeurs réelles On étudie la suite (u n



Les suites

On dit dans ce cas que la suite est définie par une relation de récurrence Fondamental : Initialisation de la récurrence Dans le cas de suites définies par récurrence, on a absolument besoin de connaître le (ou les) premier(s) terme(s) de la suite afin de pouvoir appliquer la formule de récurrence



LES SUITES (Partie 1) - Maths & tiques

LES SUITES (Partie 1) I Raisonnement par récurrence 1) Le principe C'est au mathématicien italien Giuseppe Peano (1858 ; 1932), ci-contre, que l'on attribue le principe du raisonnement par récurrence Le nom a probablement été donné par Henri Poincaré (1854 ; 1912) On considère une file illimitée de dominos placés côte à côte



Suites Classiques - Récurrence - Sommes

Suites Classiques - Récurrence - Sommes I -Généralités sur les suites Définition 1 Une suite réelle est une fonction d’une partie A de N dans R u: A R n 7 u(n) :˘un Remarque 1 •l’intervalle de définition peut donc être N •Notation un et (un)n2N Différents procédés peuvent être utilisés pour définir une suite : 1



Chapitre 1 Raisonnement par récurrence Suites numériques

Raisonnement par récurrence Suites numériques Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Raisonnement par récurrence Savoir mener un raisonnement par récurrence Ce type de raisonnement intervient tout au long de l’année et pas seulement dans le cadre de l’étude des suites Limite finie ou infinie d’une suite



CHAPITRE 1 : Récurrence , suites et fonctions

4 CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions 1 Les suites numériques (rappel de première) 1 1 Généralités Une suite ( ) de nombres réels est une fonction où la variable J est un entier naturel



Chapitre 1 Suites numériques - WordPresscom

Chapitre 7 - Suites numériques 4 2 Les suites arithmétiques 2 1 Expression par récurrence et expression explicite en fonction de n De nition 5 Une suite est dite arithmétique s'il existe r 2R tel que pour tout n 2N, u n+1 = u n +r Le nombre r est appelé raison de la suite Méthode pour montrer qu'une suite est arithmétique Calculer la



LES SUITES NUMERIQUES - AlloSchool

1) Suites majorées, suites minorées, suites bornées Activité :soit u n la suite récurrente définie par : 0 1 0 nn 2 u uu 1- Calculer les 3 premiers termes 2- Montrer par récurrence que : : 0 u n 3- Montrer par récurrence que : : u n 2 Solution :1)on a uu nn 1 2 Pour n=0 on a: uu 10 2 donc u 1 2 Pour n=1 on a: uu 21 2



Exercices avec solutions Sur LES SUITES NUMERIQUES

par : 0 1 0 nn 2 u uu °­ ® °¯ 2 1- Calculer les 3 premiers termes 2- Montrer par récurrence que : : 0d u n 3- Montrer par récurrence que : : u n d 2 Solution :1)on a uu nn 1 2 Pour n=0 on a: uu 10 2 donc u 1 2 Pour n=1 on a: uu 21 2 donc u 2 22 Pour n=2 on a: uu 32 2 donc u 3 222 2) Montrons par récurrence que : : 1étapes : l

[PDF] les suites (petit question rapide)

[PDF] Les Suites (probléme)

[PDF] Les suites (réccurence)

[PDF] Les suites (spécialité maths)

[PDF] Les suites (titre de l'exo: Abonnement)

[PDF] Les suites (Titre de l'exo: Abonnements)

[PDF] les suites (Un) et (Vn)

[PDF] les suites (Vn) et (Un)

[PDF] Les Suites - DM

[PDF] Les suites 1

[PDF] Les Suites : arithmetiques, géométriques et arithmetico-geometrique

[PDF] Les suites : les couples de lapins

[PDF] Les suites : vrai ou faux

[PDF] Les suites : vrai ou faux

[PDF] Les Suites Arithmético - Géometrique

1

LES SUITES (Partie 1)

I. Raisonnement par récurrence

1) Le principe

C'est au mathématicien italien Giuseppe Peano (1858 ; 1932), ci-contre, que l'on attribue le principe du raisonnement par récurrence. Le nom a probablement été donné par Henri Poincaré (1854 ; 1912). On considère une file illimitée de dominos placés côte à côte. La règle veut que lorsqu'un domino tombe, alors il fait tomber le domino suivant et ceci à n'importe quel niveau de la file. Alors, si le premier domino tombe, on est assuré que tous les dominos de la file tombent. Définition : Une propriété est dite héréditaire à partir du rang n 0 si lorsque pour un entier k n 0 , la propriété est vraie, alors elle est vraie pour l'entier k+1. Dans l'exemple, si on suppose qu'un domino (k) tombe alors le domino suivant (k+1) tombe également.

Principe du raisonnement par récurrence :

Si la propriété P est : - vraie au rang n

0 (Initialisation), - héréditaire à partir du rang n 0 (Hérédité), alors la propriété P est vraie pour tout entier n n 0 Dans l'exemple, le premier domino tombe (initialisation). Ici n 0 = 1. L'hérédité est vérifiée (voir plus haut).

On en déduit que tous les dominos tombent.

2 Remarque : Une démonstration par récurrence sur les entiers est mise en oeuvre lorsque toute démonstration "classique" est difficile.

2) Exemples avec les suites

Méthode : Démontrer par récurrence l'expression générale d'une suite

Vidéo https://youtu.be/H6XJ2tB1_fg

On considère la suite (u

n ) définie pour tout entier naturel n par +2+3 et =1.

Démontrer par récurrence que :

+1 • Initialisation : à Le premier domino tombe. 0+1 =1=

La propriété est donc vraie pour n = 0.

• Hérédité : - Hypothèse de récurrence : à On suppose que le k-ième domino tombe. Supposons qu'il existe un entier k tel que la propriété soit vraie : 0 +1 - Démontrons que : à Le k+1-ième domino tombe-t-il ? La propriété est vraie au rang k+1, soit : 0#$ +2 0#$ 0 +2+3, par définition +1 +2+3, par hypothèse de récurrence +2+1+2+3 +4+4 +2

à Le k+1-ième domino tombe.

• Conclusion : à Tous les dominos tombent.

La propriété est vraie pour n = 0 et héréditaire à partir de ce rang. D'après le principe

de récurrence, elle est vraie pour tout entier naturel n, soit : +1 Méthode : Démontrer la monotonie par récurrence

Vidéo https://youtu.be/nMnLaE2RAGk

On considère la suite (u

n ) définie pour tout entier naturel n par 3 +2 et =2.

Démontrer par récurrence que la suite (u

n ) est croissante. On va démontrer que pour tout entier naturel n, on a : • Initialisation : =2 et 3 +2= 3

×2+2=

6 3 >2 donc 3 • Hérédité : - Hypothèse de récurrence : Supposons qu'il existe un entier k tel que la propriété soit vraie : 0#$ 0 - Démontrons que : La propriété est vraie au rang k+1 : 0#. 0#$

On a

0#$ 0 donc : 3 +1 3 et donc 3 +1 +2≥ 3 +2 soit 0#. 0#$ • Conclusion :

La propriété est vraie pour n = 0 et héréditaire à partir de ce rang. D'après le principe

de récurrence, elle est vraie pour tout entier naturel n, soit : et donc la suite (u n ) est croissante.

3) Inégalité de Bernoulli

Soit un nombre réel a strictement positif.

Pour tout entier naturel n, on a :

1+

≥1+.

Démonstration au programme :

Vidéo https://youtu.be/H6XJ2tB1_fg

• Initialisation : - La propriété est vraie pour n = 0.

En effet,

1+

=1 et 1+0×=1. • Hérédité : - Hypothèse de récurrence : Supposons qu'il existe un entier k tel que la propriété soit vraie :

1+

0 ≥1+ - Démontrons que : la propriété est vraie au rang k+1, soit :

1+

0#$ ≥1+ +1

1+

0 ≥1+, d'après l'hypothèse de récurrence.

Donc :

1+

1+

0

1+

1+

Soit :

1+

0#$ ≥1+++

Soit encore :

1+

0#$ ≥1+ +1 ≥1+ +1 , car ≥0.

Et donc :

1+

0#$ ≥1+ +1 • Conclusion :

La propriété est vraie pour n = 0 et héréditaire à partir de ce rang. D'après le principe

de récurrence, elle est vraie pour tout entier naturel n. Remarque : L'initialisation est indispensable sinon on peut démontrer des propriétés fausses ! En effet, démontrons par exemple que la propriété "2 n est divisible par 3" est héréditaire sans vérifier l'initialisation. 4

Supposons qu'il existe un entier k tel que 2

k est divisible par 3. 2 k+1 = 2 k x 2 = 3p x 2, où p est un entier (d'après l'hypothèse de récurrence). = 6p

Donc 2

k+1 est divisible par 3. L'hérédité est vérifiée et pourtant la propriété n'est jamais vraie.

II. Limite finie ou infinie d'une suite

1) Limite infinie

Exemple :

La suite (u

n ) définie sur ℕ par a pour limite +∞. En effet, les termes de la suite deviennent aussi grands que l'on souhaite à partir d'un certain rang.

Si on prend un réel a quelconque, l'intervalle

contient tous les termes de la suite à partir d'un certain rang.

Définitions : - On dit que la suite (u

n ) admet pour limite +∞ si tout intervalle a réel, contient tous les termes de la suite à partir d'un certain rang et on note : lim →#C - On dit que la suite (u n ) admet pour limite -∞ si tout intervallequotesdbs_dbs46.pdfusesText_46