[PDF] LIMITES DE SUITES



Previous PDF Next PDF







LIMITES DE SUITES

Yvan Monka – Académie de Strasbourg – www maths-et-tiques 3 TI CASIO II Limite de la somme de termes consécutifs Méthode : Calculer la limite de la somme des premiers termes d'une suite



Christophe Bertault — Mathématiques en MPSI LIMITE D UNE SUITE

LIMITE D’UNE SUITE 1 UN PEU DE VOCABULAIRE Définition (Suite réelle) On appelle suite (réelle) toute fonction u de Ndans R Pour tout n ∈ N, on préfère noter un le réel u(n), et (un)n∈Nou (un)n¾0 la suite u On travaillera seulement dans ce chapitre avec des suites définies sur tout N, mais on pourrait bien sûr travailler avec



Limite dune suite Suites convergentes

Limite d'une suite Suites convergentes 1 Limite d'une suite 1 1 Limite infinie a) Définitions On dit que la suite(un)admet pour limite +∞ si et seulement si, pour tout nombre réel A, tous les termes de la suite sont supérieur à A à partir d'un certain rang



LIMITE D’UNE SUITE

LIMITE D’UNE SUITE Etudier la limite d’une suite ( u n) , c’est examiner le comportement des termes u n lorsque n prend des valeurs de plus en plus grandes vers + ∞ 1 ) LES DIFFERENTS CAS POSSIBLES Soit une suite ( u n) cas 1 Si « u n est aussi grand que l’on veut dès que n est assez grand », alors on dit que la suite ( u n) a



Les suites - Partie II : Les limites

Limite d'une somme 7 Limite d'un produit 8 Limite d'un quotient 8 Exercice 9 Souvent pour calculer des limites, on s'appuie sur des limites de suites usuelles que l'on connaît et on applique des opérations sur celles-ci La plupart du temps ces opérations sont intuitives et relèvent du bon sens, mais



Suites arithmético-géométriques Limite et somme d’une suite

Limite et somme d’une suite géométrique cours de TaleES I Suites arithmético-géométriques EXERCICE 6 1 : Etude d’une suite arithmético-géométrique Dans une réserve naturelle, une race de singes est en voie d’extinction à cause d’une maladie Au premier janvier 2014, une



Limites de suites

Déterminer une limite en utilisant la définition 31 Étudier la limite d’une somme, d’un produit et d’un quotient 32 Déterminer une limite par minoration, majoration, encadrement 33 Connaître et utiliser le théorème de convergence des suites monotones 34 Déterminer la limite éventuelle d’une suite géométrique 35



Raisonnement par récurrence Limite d’une suite

2 LIMITE D’UNE SUITE Suites de référence : Les suites définies pour tout entier naturel n 6= 0 par : 1 √ n , 1 n , 1 n2 1 nk avec k ∈ N∗, ont pour limite 0 Algorithme : : Déterminer à partir de quel entier n, le terme un est dans un



Raisonnement par récurrence Limite d’une suite

2) On considère la suite arithmétique (vn) de raison 8 et de premier terme v0 = 16 Justifier que la somme des n premiers termes de cette suite est égale à 4n 2 +12n 3) Démontrer par récurrence que pour tout entier naturel n on a : u n = 4n 2 +12n +5

[PDF] limite d'une suite 1ere s

[PDF] limite d'une suite arithmético géométrique

[PDF] limite d'une suite arithmético-géométrique

[PDF] limite d'une suite arithmétique

[PDF] limite d'une suite convergente

[PDF] limite d'une suite definition

[PDF] limite d'une suite exercices corrigés

[PDF] limite d'une suite géométrique

[PDF] limite d'une suite géométrique de raison négative

[PDF] limite d'une suite intégrale

[PDF] limite d'une suite première s

[PDF] limite d'une suite récurrente

[PDF] limite d'une suite terminale es

[PDF] limite d'une suite terminale s

[PDF] limite de 1/n

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr1LIMITES DE SUITES I. Limite d'une suite géométrique 1) Suite (qn) q

01 lim n→+∞ q n

0 1 +∞

Exemples : a)

lim n→+∞ 4 n b) lim n→+∞ 1 3 n =0 c) lim n→+∞ 4 n +3 ? On a lim n→+∞ 4 n donc lim n→+∞ 4 n +3

2) Suite géométrique positive Propriété : (un) est une suite géométrique positive de raison q et de premier terme non nul u0. - Si

q>1 alors lim n→+∞ u n . - Si q=1 alors lim n→+∞ u n =u 0 . - Si 0. Démonstration : (un) est une suite géométrique de raison q et de premier terme positif non nul u0 donc

u n =u 0 ×q n . Donc lim n→+∞ u n =u 0

×lim

n→+∞ q n

. Méthode : Utiliser la limite d'une suite géométrique Vidéo https://youtu.be/F-PGmIK5Ypg Vidéo https://youtu.be/2BueBAoPvvc Déterminer les limites suivantes : a)

lim n→+∞ 2 n 3 b) lim n→+∞

1+3×

1 5 n 2 n 3 est le terme général d'une suite géométrique de premier terme 1 3 de raison 2 et 2>1 . Donc lim n→+∞ 2 n 3 . b) lim n→+∞ 3× 1 5 n =0 car 3× 1 5 n est le terme général d'une suite géométrique de raison comprise entre 0 et 1. Donc lim n→+∞

1+3×

1 5 n =1

. 3) Algorithme permettant de déterminer un rang à partir duquel une suite (qn) est inférieure à un nombre réel A : Vidéos dans la Playlist : https://www.youtube.com/playlist?list=PLVUDmbpupCaoQ0obuj7GtEkWJB9QM8aVR On considère la suite (un) définie par

u 0 =2 et pour tout entier n, u n+1 1 4 u n

. Voici un algorithme écrit en langage naturel : Langage naturel Entrée Saisir le réel A Initialisation Affecter à n la valeur 0 Affecter à u la valeur 2 Traitement des données Tant que u > A Faire Affecter à n la valeur n + 1 Affecter à u la valeur u/4 Sortie Afficher n En appliquant cet algorithme avec A = 0,1, on obtient en sortie n = 3. A partir du terme u3, la suite est inférieure à 0,1. En langage " calculatrice », cela donne :

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr3 TI CASIO II. Limite de la somme de termes consécutifs Méthode : Calculer la limite de la somme des premiers termes d'une suite géométrique Vidéo https://youtu.be/6QjMEzEn5X0 Soit (un) la suite géométrique de raison 0,5 et de premier terme

u 0 =4 . On note S n =u 0 +u 1 +...+u n . Calculer la limite de la suite (Sn). S n =u 0 +u 1 +u 2 +...+u n =4+4×0,5+4×0,5 2 +...+4×0,5 n =41+0,5+0,5 2 +...+0,5 n =4× 1-0,5 n+1 1-0,5 =81-0,5 n+1 =8-8×0,5 n+1 Or, lim n→+∞ 0,5 n+1 =0 et donc lim n→+∞

8-8×0,5

n+1 =8 . D'où lim n→+∞ S n =8

. Horsducadredelaclasse,aucunereproduction,mêmepartielle,autresquecellesprévuesàl'articleL122-5ducodedelapropriétéintellectuelle,nepeutêtrefaitedecesitesansl'autorisationexpressedel'auteur.www.maths-et-tiques.fr/index.php/mentions-legales

quotesdbs_dbs47.pdfusesText_47