[PDF] Relation d’équivalence, relation d’ordre 1 Relation d’équivalence



Previous PDF Next PDF







TD2 : Relations d’ordre et d’équivalence (avec corrigé)

TD2 : Relations d’ordre et d’équivalence (avec corrigé) Exercice 1: (a) Prouvez que la relation sur Z aRb ⇔ a −b est un multiple de 5 est une relation d’équivalence Solution: On vérifie les 3 conditions : — Réflexivité : Soit x ∈ Z On veut prouver xRx, c’est à dire x− est un multiple de 5 On a x − x = 0 = 5 ×0



Daniel ALIBERT Ensembles, applications Relations d

Une relation réflexive, symétrique et transitive est appelée une relation d'équivalence Définition Soit E un ensemble, muni d'une relation d'équivalence R Pour tout élément x de E, on appelle classe d'équivalence de x et l'on note C(x) le sous-ensemble de E formé des éléments y tels que x R y soit vrai



Relation d’équivalence, relation d’ordre 1 Relation d’équivalence

Relation d’équivalence, relation d’ordre 1 Relation d’équivalence Exercice 1 Dans C on définit la relation R par : zRz0,jzj=jz0j: 1 Montrer que R est une relation d’équivalence 2 Déterminer la classe d’équivalence de chaque z2C Indication H Correction H Vidéo [000209] Exercice 2 Montrer que la relation R définie sur R par



Feuille d’exercice n 08 : Relations d’ordre et d’équivalence

Feuille d’exercice n° 08 : Relations d’ordre et d’équivalence, et ensembles de nombres usuels Exercice 1 SoitEunensembleetAunepartiedeE OndéfinitlarelationRsurP(E) par :XRY siX∪A= Y∪A 1) MontrerqueRestunerelationd’équivalence 2) Décrirelaclassed’équivalencedeX∈P(E)



1 Exemples simples de relations d’équivalence

deEs’appellelaclasse d’équivalence dexdansE Onalespropriétés: 7 Exercices complémentaires Prouvez que la relation ˘est une relation d’équivalence



RELATION BINAIRE - Claude Bernard University Lyon 1

Cette relation n’est pas une relation d’équivalence Remarque : il était inutile de montrer que cette relation était réflexive et transitive Allez à : Exercice 7 : 3 Si alors donc cette relation n’est pas réflexive Donc ce n’est pas une relation d’équivalence, on va tout de même regarder les deux autres propriétés



APPLICATIONS EXERCICES - bagbouton

EXERCICES EXERCICE 1 : Montrer que la relation R définie sur par :xy x y xR 2 2 y est une relation d’équivalence Déterminer pour tout réel a , le nombre d’éléments de la classe de a EXERCICE 2 : Montrer que la relation R définie sur par :x y x y xR 3 3 3 y est une relation d’équivalence



Christophe Bertault — Mathématiques en MPSI RELATIONS BINAIRES

Théorème (Classes d’équivalence d’une relation d’équivalence, ensemble quotient) Soit ∼ une relation d’équiva-lence sur E • Pour tout x ∈ E, l’ensemble y ∈ E x ∼ y est appelé la classe d’équivalence de x (pour ∼) Les classes d’équivalences pour ∼ forment une partition de E Cela revient à dire qu’elle



Corrigé du TD no 7

D kD0⇔D estparallèleàD0 1 Vérifionsquekestunerelationd’équivalence: (a) Réflexivité:unedroiteD estbienparallèleàelle-même (b) Symétrie:siD estparallèleàD0,alorsD0estparallèleàD (c) Transitivité:siD estparallèleàD 0,etsiD estparallèleàD 00,alorsD estparallèleàD 2 Soit E 0 l’ensemble des droites passant par l

[PDF] relation binaire exercices corrigés

[PDF] relation binaire cours

[PDF] relation binaire pdf

[PDF] relation antisymétrique

[PDF] ensemble quotient exercice corrigé

[PDF] relation d'equivalence exercice corrigé pdf

[PDF] exercice relation d'equivalence

[PDF] chargaff adn

[PDF] ordre de grandeur de la voie lactée

[PDF] a+t / g+c

[PDF] niveaux d'organisation du vivant svt

[PDF] les différents niveaux d'organisation du vivant

[PDF] niveau d'organisation du vivant exercices

[PDF] les différents niveaux d'organisation des êtres vivants

[PDF] niveau d'organisation biologique

Relation d’équivalence, relation d’ordre 1 Relation d’équivalence Exo7

Relation d"équivalence, relation d"ordre

1 Relation d"équivalence

Exercice 1DansCon définit la relationRpar :

zRz0, jzj=jz0j: 1.

Montrer que Rest une relation d"équivalence.

2. Déterminer la classe d"équi valencede chaque z2C. HH???Exercice 2

Montrer que la relationRdéfinie surRpar :

xRy()xey=yex

est une relation d"équivalence. Préciser, pourxfixé dansR, le nombre d"éléments de la classe dexmoduloR.

HH???2 Relation d"ordre Exercice 3Soit(E;6)un ensemble ordonné. On définit surP(E)nf/0gla relationpar

XYssi(X=You8x2X8y2Y x6y):

Vérifier que c"est une relation d"ordre.

H???1 Indication pourl"exer cice1 NUn dessin permettra d"avoir une bonne idée de ce qui se passe...

Indication pour

l"exer cice

2 N1.Pour la transiti vitéon pourra calculer xyez.

2.

Poser la fonction t7!te

t, après une étude de fonction on calculera le nombre d"antécédents possibles.2 Correction del"exer cice1 N1.Soient z;z0;z00des complexes quelconques.

Reflexivité :zRzcarjzj=jzj.

Symétrie :zRz0)z0Rzcarjzj=jz0jet doncjz0j=jzj.

Transitivité :zRz0etz0Rz00alorsjzj=jz0j=jz00jdonczRz00. En fait, nous avons juste retranscrit que l"égalité "=" est une relation d"équivalence. 2.

La classe d"équi valenced"un point z2Cest l"ensemble des complexes qui sont en relation avecz,i.e.

l"ensemble des complexes dont le module est égal àjzj. Géométriquement la classe d"équivalence dez

est le cerlceCde centre 0 et de rayonjzj: C=n jzjeiq=q2Ro :Correction del"exer cice2 N1.• Refle xivité: Pour tout x2R,xex=xexdoncxRx. Symétrie : Pour x;y2R, sixRyalorsxey=yexdoncyex=xeydoncyRx. T ransitivité: Soient x;y;z2Rtels quexRyetyRz, alorsxey=yexetyez=zey. Calculonsxyez: xye z=x(yez) =x(zey) =z(xey) =z(yex) =yzex: Doncxyez=yzex. Siy6=0 alors en divisant paryon vient de montrer quexez=zexdoncxRzet c"est fini. Pour le casy=0 alorsx=0 etz=0 doncxRzégalement. 2. Soit x2Rfixé. On noteC(x)la classe d"équivalence dexmoduloR:

C(x):=fy2RjyRxg:

Donc

C(x) =fy2Rjxey=yexg:

Soit la fonctionf:R!Rdéfinie par

f(t) =te t: Alors

C(x) =fy2Rjf(x) =f(y)g:

Autrement ditC(x)est l"ensemble desy2Rqui parfprennent la même valeur quef(x); en raccourci :

C(x) =f1(f(x)):

Étudions maintenant la fonctionfafin de déterminer le nombre d"antécédents: par un calcul def0on

montrer quefest strictement croissante sur]¥;1]puis strictement décroissante sur[1;+¥[. De plus

en¥la limite defest¥,f(1) =1e , et la limite en+¥est 0.

C"est le moment de dessiner le graphe def!!

Pour x60 alorsf(x)2]¥;0]et alorsf(x)a un seul antécédent.

Pour x>0 avecx6=1 alorsf(x)2]0;1e

[et alorsf(x)a deux antécédents. pour x=1, alorsf(x) =1=en"a qu"un seul antécédent. Bilan : six2]0;1[[]1;+¥[alors CardC(x) =Cardf1(f(x)) =2, six60 oux=1 alors CardC(x) =

Cardf1(f(x)) =1.

3 Correction del"exer cice3 N•Refle xivité: pour tout X2P(E)on aXXcarX=X. Anti-symétrie : pour X;Y2P(E)tels queXYetYX, alors par définition deon a

8x2X8y2Y x6yety6x:

Comme la relation6est une relation d"ordre alorsx6yety6ximpliquex=y. Donc

8x2X8y2Y x=y;

ce qui implique queX=Y(dans ce cas en faitXest vide ou un singleton). T ransitivité: soit X;Y;Z2P(E)tels queXYetYZ. SiX=YouY=Zalors il est clair queXZ.

Supposons queX6=YetY6=Zalors

8x2X8y2Y x6yet8y2Y8z2Z y6z:

Donc on a

8x2X8y2Y8z2Z x6yety6z;

alors par transitivité de la relation6on obtient :

8x2X8z2Z x6z:

DoncXZ.4

quotesdbs_dbs2.pdfusesText_3