[PDF] Calculs sur les matrices - Exo7



Previous PDF Next PDF







Calculs sur les matrices - Exo7

Exo7 Calculs sur les matrices Corrections d’Arnaud Bodin 1 Opérations sur les matrices Exercice 1 Effectuer le produit des matrices : 2 1 3 2 1 1



Exo7 - Exercices de mathématiques

Exo7 Matrices Exercices de Jean-Louis Rouget Retrouver aussi cette fiche sur www maths-france * très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exercice 1 **T Soit u l’endomorphisme de R3 dont la matrice dans la base canonique (i; j;k) de



Exo7 - Exercices de mathématiques

Exercice 8 **** Soit A une matrice carrée de format n Montrer que A est nilpotente si et seulement si 8k 2[[1;n]], Tr(Ak)=0 Correction H [005658] Exercice 9 *** I Soient f et g deux endomorphismes d’un espace vectoriel de dimension finie vérifiant fg gf = f Montrer que f est nilpotent Correction H [005659] Exercice 10 ****



Exo7 - Exercices de mathématiques

Exercice 4 Soit A la matrice suivante A= 3 0 −1 2 4 2 −1 0 3 1 Déterminer et factoriser le polynôme caractéristique de A 2 Démontrer que A est diagonalisable et déterminer une matrice D diagonale et une matrice P inversible telles A=PDP−1 3 Donner en le justifiant, mais sans calcul, le polynôme minimal de A 4 Calculer An





Exo7 - Exercices de mathématiques

Enoncés et corrections : Sandra Delaunay Exo7 Sujets de l’année 2004-2005 1 Devoir à la maison Exercice 1 Soit M la matrice réelle 3×3 suivante : M = 0 2 −1 3 −2 0 −2 2 1 1 Déterminer les valeurs propres de M 2 Montrer que M est diagonalisable 3 Déterminer une base de vecteurs propres et P la matrice de passage 4



Exo7 - Exercices de mathématiques

Exo7 Probabilité conditionnelle Exercice 1 2 A l’aide de la matrice mise en évidence en déduire u n et v n Faire un calcul direct à l’aide de u n +v n



Exo7 - Exercices de mathématiques

Exo7 Préalables, rappels Exercice 1 Exercice 2 Décrire la boule de centre l’origine et de rayon 1 dans les espaces suivants : une matrice de M n;n(R ou C



DIAGONALISATION - physique-mathscom

Exercice 1 1 Déterminer si les matrices suivantes sont diagonalisables (sur R ou C) Lorsque c’est le cas, les diagonaliser puis calculer leur puissance 100-ième (i) M 1 = 4 1 9 2 (ii) M 2 = 6 8 4 6 (iii) M 3 = 2 1 2 0 Corrigé de l’exercice 1 1 (i)Première étape : valeurs propres Le polynôme caractéristique de M 1 est det(M

[PDF] calcul matriciel multiplication

[PDF] habitude alimentaire definition

[PDF] guide de bonnes pratiques d'hygiène en pâtisserie

[PDF] propriété d archimède exercices

[PDF] partie entière inégalité

[PDF] espace numérique éducation

[PDF] portail numérique éducation

[PDF] partie entière d'un nombre négatif

[PDF] manuel numérique nathan

[PDF] partie entière d'un nombre décimal

[PDF] pne

[PDF] hachette enseignant

[PDF] fonction partie entière cours pdf

[PDF] correction livre passerelle philosophie

[PDF] passerelle philosophie terminale pdf

Calculs sur les matrices - Exo7 Exo7

Calculs sur les matrices

Corrections d"Arnaud Bodin.

1 Opérations sur les matrices

Exercice 1Effectuer le produit des matrices :

2 1 3 2 11 1 2 1 2 0 3 1 4 0 @11 0 1 41

2 1 21

A0 @a b c c b a

1 1 11

A 0 @1a c 1b b 1c a1 A H???Exercice 2

SoitA(q) =cosqsinq

sinqcosq pourq2R. CalculerA(q)A(q0)etA(q)npourn>1. HH???Exercice 3 SoientAetB2Mn(R)telles que8X2Mn(R), tr(AX) =tr(BX). Montrer queA=B. HH???Exercice 4 Que peut-on dire d"une matriceA2Mn(R)qui vérifie tr(AtA) =0 ? HH???2 Inverse Exercice 5Calculer (s"il existe) l"inverse des matrices : a b c d 0 @1 2 1 1 21 2211
A0 @1¯a¯a2 a1¯a a 2a11 A (a2C)0 B

B@0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 01

C CA 0 B

BBBBB@1 1 1

0 1 0 1 1 00 11 C

CCCCCA0

B

BBBBBB@1 2 3n

0 1 2...

... 0 1 2 00 11 C

CCCCCCA

1 H???Exercice 6

SoitA=0

@1 0 2 01 1 12 01 A . CalculerA3A. En déduire queAest inversible puis déterminerA1.

HH???Exercice 7Mantisymétrique)I+Mest inversibleSoitM2Mn(R)antisymétrique.

1. Montrer que I+Mest inversible (si(I+M)X=0, calculert(MX)(MX)). 2.

Soit A= (IM)(I+M)1. Montrer quetA=A1.

HH???Exercice 8

A= (ai;j)2Mn(R)telle que :

8i=1;:::;njai;ij>å

j6=i ai;j:

Montrer queAest inversible.

HH???2

Indication pourl"exer cice2 NIl faut connaître les formules de cos(q+q0)et sin(q+q0).Indication pourl"exer cice3 NEssayer avecXla matrice élémentaireEij(des zéros partout sauf le coefficient 1 à lai-ème ligne et laj-ème

colonne).Indication pourl"exer cice4 NAppliquer la formule du produit pour calculer les coefficients diagonaux deAtAIndication pourl"exer cice6 NUne fois que l"on a calculéA2etA3on peut en déduireA1sans calculs.Indication pourl"exer cice7 NMantisymétrique signifietM=M.

1. Si Yest un vecteur alorstYY=kYk2est un réel positif ou nul.

2.IMet(I+M)1commutent.Indication pourl"exer cice8 NPrendre un vecteurX=0

B @x 1... x n1 C Atel queAX=0, considérer le rangi0teljxi0j=maxjxij ji=1;:::;n.3

Correction del"exer cice1 NSiC=ABalors on obtient le coefficientcij(situé à lai-ème ligne et laj-ème colonne deC) en effectuant le

produit scalaire dui-ème vecteur-ligne deAavec lej-éme vecteur colonne deB.

On trouve

2 1 3 2 11 1 2 =3 0 5 1 1 2 0 3 1 4 0 @11 0 1 41

2 1 21

A =1 72 6 5 7 0 @a b c c b a

1 1 11

A 0 @1a c 1b b 1c a1 A =0 @a+b+c a2+b2+c22ac+b2 a+b+c2ac+b2a2+b2+c2

3a+b+c a+b+c1

ACorrection del"exer cice2 NA(q)A(q0) =cosqsinq

sinqcosq cosq0sinq0 sinq0cosq0 cosqcosq0sinqsinq0cosqsinq0sinqcosq0 sinqcosq0+cosqsinq0sinqsinq0+cosqcosq0 cos(q+q0)sin(q+q0) sin(q+q0)cos(q+q0) =A(q+q0)

Bilan :A(q)A(q0) =A(q+q0).

Nous allons montrer par récurrence surn>1 queA(q)n=A(nq).

C"est bien sûr vrai pour n=1.

Fixons n>1 et supposons queA(q)n=A(nq)alors

A(q)n+1=A(q)nA(q) =A(nq)A(q) =A(nq+q) =A((n+1)q)

C"est donc vrai pour tout n>1.

Remarques :

On aurait aussi la formule A(q0)A(q) =A(q+q0) =A(q)A(q0). Les matricesA(q)etA(q0) commutent. En f aitil n"est pas plus dif ficilede montrer que

A(q)1=A(q). On sait aussi que par définitionA(q)0=I. Et on en déduit que pourn2Zon aA(q)n=A(nq).

En ter megéométrique A(q)est la matrice de la rotation d"angleq(centrée à l"origine). On vient de

montrer que si l"on compose un rotation d"angleqavec un rotation d"angleq0alors on obtient une

rotation d"angleq+q0.Correction del"exer cice3 NNotonsEijla matrice élémentaire (des zéros partout sauf le coefficient 1 à lai-ème ligne et laj-ème colonne).

4

SoitA= (aij)2Mn(R). Alors

AEij=0

B

BBBBBBB@0 00a1i0

0 00a2i0

0 00aji0

0 00ani01

C

CCCCCCCA

La seule colonne non nulle est laj-ème colonne.

La trace est la somme des éléments sur la diagonale. Ici le seul élément non nul de la diagonale estaji, on en

déduit donc tr(AEij) =aji (attention à l"inversion des indices). Maintenant prenons deux matricesA;Btelles que tr(AX) =tr(BX)pour toute matriceX. Alors pourX=Eij

on en déduitaji=bji. On fait ceci pour toutes les matrices élémentairesEijavec 16i;j6nce qui implique

A=B.Correction del"exer cice4 NNotonsA= (aij), notonsB=tAsi les coefficients sontB= (bij)alors par définition de la transposée on a

b ij=aji.

Ensuite notonsC=ABalors par définition du produit de matrices le coefficientscijdeCs"obtient par la

formule : c ij=nå k=1a ikbkj:

Appliquons ceci avecB=tA

c ij=nå k=1a ikbkj=nå k=1a ikajk: Et pour un coefficient de la diagonale on ai=jdonc c ii=nå k=1a2ik:quotesdbs_dbs2.pdfusesText_3