Fonctions logarithmes népérien et décimal









FONCTION LOGARITHME DÉCIMAL

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. FONCTION LOGARITHME DÉCIMAL. En 1614 un mathématicien écossais
LogTT


La fonction logarithme décimal

La fonction logarithme décimal. Propriétés analytiques. Pour x strictement positif log(x) = ln(x) ln(10). (avec ln(10) = 2
LogarithmeDecimal


Fonction logarithme décimal cours de terminale STMG

21 mai 2022 On appelle fonction logarithme décimal et on note log la fonction qui à tout réel x strictement positif associe l'unique réel y tel que 10y = x.
fonctionLogCoursTSTMG


COURS TERMINALE STD2A FONCTION LOGARITHME DÉCIMAL

A. La fonction logarithme décimal. 1. Définition : La fonction logarithme décimal est la fonction f définie sur ]0 ; +∞ [ par f(x) = log(x).
coursTSTD A logarithme





LES LOGARITHMES

La fonction ainsi définie (appelée logarithme décimal ou logarithme vulgaire et notée log ou log10) permet de transcrire le tableau précédent de la manière 
Logarithmes


Lien entre mathématiques et physique : La fonction « log

La fonction « logarithme décimal » notée
PCM LMPC log


Fonction exponentielle de base q et logarithme décimal

2) Qu'est ce qu'une fonction logarithme décimal ? A l'écran de la calculatrice on a tracé la courbe d'équation y1 = 10x et la droite d'équation y2 
Cours bac pro Tale Fonctions exponentielle logarithme deci


Fonctions logarithmes népérien et décimal

Fonctions logarithmes népérien et décimal La fonction logarithme népérien notée ln
TS courslogarithme





Exercices - Fonction logarithme décimal - Terminale STHR

EXERCICES. MATHÉMATIQUES. TERMINALE STHR. CHAPITRE N°4. Lycée Jean DROUANT. FONCTION LOGARITHME DÉCIMAL. EXERCICE 1. Résoudre les équations suivantes :.
fonction logarithme decimal


fonction logarithme décimal

Formule Explicite définition : (fonction logarithme de base 10 ou fonction logarithme décimal) quel que soit le nombre réel positif strict x > 0 :.
fonction logarithme decimal


217841 Fonctions logarithmes népérien et décimal Fonctions logarithmes népérien et décimal

Table des matières

I Définition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

I.1 Définitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

I.2 Sens de variation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

IIPropriétés algébriques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

II.1 Relation fonctionnelle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

II.2 Logarithmed"un quotient. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

II.3 Logarithmed"un produit de nombre positifs. . . . . . . . . . . . . . . . . . . . . . . . . . . 5

II.4 Logarithmed"une puissance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

II.5 Logarithmed"une racine carrée. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

III Etude de la fonction logarithme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

III.1 Limites en 0 et en+∞. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

III.2 Continuitéet dérivabilitéde la fonction logarithme. . . . . . . . . . . . . . . . . . . . . . . 6

III.3 Tableau de variation et représentationgraphique. . . . . . . . . . . . . . . . . . . . . . . . 7

III.4 Croissances comparées. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

IV Logarithmed"une fonction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

V Logarithmedécimal (hors-programme). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

I Définition

I.1 Définitions

Rappel :

Tout nombrexdeRa une unique image par la fonction exp (comme pour toute fonction).

D"après le théorème des valeurs intermédiaires, pour tout réelyde ]0;+∞[, il existe un unique réelxtel que

e x=y. (voir interprétationgraphique).

Chaque réel deRa une image unique dans ]0 ;+∞[ et réciproquement, chaque réel de ]0 ;+∞[ a un antécé-

dent unique par cette fonction exponentielle.

Définition

On dit que la fonction exp est une bijection deRsur ]0 ;+∞[. Siex=y, on dit quexest le logarithmenépérien dey.

Lafonctionlogarithmenépérien,notéeln,estlafonctiondéfiniesur]0;+∞[qui,àtoutréelx>0,associe

le nombre noté ln(x) ou lnxdont l"exponentiellevautx.

Conséquences :

a) Pour tout réelx>0 et tout réely,ey=x?y=lnx. b) Pour tout réelx>0,elnx=x. 1 c) Pour tout réelx, ln(ex)=x.

Démonstration :

a) et b) se déduisent directement de la définition. Pour c) : Pour tout réelx, on posey=ln(ex); alors d"après a),y=exdoncx=y.

Autres conséquences:

•ln1=0. En effet,e0=1 et d"après (1), cela équivaut à ln1=0.

•lne=1. En effet,e1=eet on applique (1).

•Pour tout réelλ, l"équation lnx=λa pour unique solutionx=eλ(d"après (1)).

Propriété

Dans un repère orthonormal, les courbesCetC?, représentatives des fonctions exponentielle et loga-

rithme népérien sont symétriques par rapport à la droite d"équationy=x.

Démonstration :

M?(x;y)?C??y=lnx?x=ey?M(y;x)?C.MetM?sont symétriques par rapport à la droite d"équation y=x, donc les deux courbes également.

Page 2/

9 O11 y=x y=lnxy=ex

Page 3/

9

I.2 Sens de variation

Propriété

La fonction logarithmenépérien est strictement croissante sur ]0;+∞[.

Démonstration:aetbsont deux réels tels que 0 fonction exponentielleest croissante.

Conséquences:

Soientaetbdeux réels de ]0;+∞[.

•lna=lnb?a=b.

•lna

•lna<0?a<1.

•lna>0?a>1.

Exercices d"application :

a) Résoudre : lnx=-5 lnx=-5?x=e-5 b) Résoudre l"équation ln(3x+2)=7 On commence par résoudre l"inéquation 3x+2>0 soitx>-2 3.

On obtient alors :x=e7-2

3. Il reste à vérifier si la solutionappartient à l"intervallede définition.

c) Résoudre l"inéquation ln(2+x)?100 Ensemble de définition :x+2>0?x>-2. Pourx>-2, ln(2+x)?100?eln(2+x)?e100?2+x?e100(car exp est croissante).

On en déduit :x?e100-2>-2 doncS=?e100-2?

d) Résoudre l"équation ln(x2-9)=lnx

On doit avoir :x2-9>0 etx>0 etx2-9=x

x

2-9>0?x2>9?x<-3 oux>3.

Finalement, l"ensemble de définition estD=]3 ;=∞[.

Pourx?D, ln(x2-9)=xln?x2-9-x=0?x2-x-9=0.

Δ=37>0; on trouvex1=1-?

37

2?D;x2=1+?

37

2>3 doncx2?D.

S=? 1+? 37
2?

II Propriétés algébriques

II.1 Relation fonctionnelle

Théorème

Pour tous réelsaetbde ]0;+∞[ : lnab=lna+lnb

Démonstration :

aetbsont deux réels strictement positifs.

On poseA=lnabetB=lna+lnb.

Alors :eA=ab;eB=elna+lnb=elna×elnb=ab=A.

Page 4/

9

II.2 Logarithme d"un quotient

Propriété

Poura>0, ln?1a?

=-lna.

Démonstration :

a×1a=1 d"o ln? a×1a? =0?lna+ln?1a? =0 d"o : ln?1a? =-lna.

Propriété

Pour tous réelsaetbde ]0;+∞[, lnab=lna-lnb

Démonstration:

lnab=ln? a×1b? =lna+ln1b=lna-lnb.

II.3 Logarithme d"un produit de nombre positifs

Propriété

Pour tous réels strictement positifsa1,a2, ...,an, ln(a1a2...an)=lna1+lna2+...lnan.

Autre écriture (symbolique) : ln?

n? i=1? =n? i=1lnai Démonstration :par récurrence surn(facile, laissée au lecteur).

II.4 Logarithme d"une puissance

Propriété

Pour tout réela>0 et tout entier relatifn, ln?an?=nlna. Démonstration :Il faut distinguer les casn>0,n=0 etn<0. Fonctions logarithmes népérien et décimal

Table des matières

I Définition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

I.1 Définitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

I.2 Sens de variation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

IIPropriétés algébriques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

II.1 Relation fonctionnelle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

II.2 Logarithmed"un quotient. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

II.3 Logarithmed"un produit de nombre positifs. . . . . . . . . . . . . . . . . . . . . . . . . . . 5

II.4 Logarithmed"une puissance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

II.5 Logarithmed"une racine carrée. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

III Etude de la fonction logarithme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

III.1 Limites en 0 et en+∞. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

III.2 Continuitéet dérivabilitéde la fonction logarithme. . . . . . . . . . . . . . . . . . . . . . . 6

III.3 Tableau de variation et représentationgraphique. . . . . . . . . . . . . . . . . . . . . . . . 7

III.4 Croissances comparées. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

IV Logarithmed"une fonction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

V Logarithmedécimal (hors-programme). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

I Définition

I.1 Définitions

Rappel :

Tout nombrexdeRa une unique image par la fonction exp (comme pour toute fonction).

D"après le théorème des valeurs intermédiaires, pour tout réelyde ]0;+∞[, il existe un unique réelxtel que

e x=y. (voir interprétationgraphique).

Chaque réel deRa une image unique dans ]0 ;+∞[ et réciproquement, chaque réel de ]0 ;+∞[ a un antécé-

dent unique par cette fonction exponentielle.

Définition

On dit que la fonction exp est une bijection deRsur ]0 ;+∞[. Siex=y, on dit quexest le logarithmenépérien dey.

Lafonctionlogarithmenépérien,notéeln,estlafonctiondéfiniesur]0;+∞[qui,àtoutréelx>0,associe

le nombre noté ln(x) ou lnxdont l"exponentiellevautx.

Conséquences :

a) Pour tout réelx>0 et tout réely,ey=x?y=lnx. b) Pour tout réelx>0,elnx=x. 1 c) Pour tout réelx, ln(ex)=x.

Démonstration :

a) et b) se déduisent directement de la définition. Pour c) : Pour tout réelx, on posey=ln(ex); alors d"après a),y=exdoncx=y.

Autres conséquences:

•ln1=0. En effet,e0=1 et d"après (1), cela équivaut à ln1=0.

•lne=1. En effet,e1=eet on applique (1).

•Pour tout réelλ, l"équation lnx=λa pour unique solutionx=eλ(d"après (1)).

Propriété

Dans un repère orthonormal, les courbesCetC?, représentatives des fonctions exponentielle et loga-

rithme népérien sont symétriques par rapport à la droite d"équationy=x.

Démonstration :

M?(x;y)?C??y=lnx?x=ey?M(y;x)?C.MetM?sont symétriques par rapport à la droite d"équation y=x, donc les deux courbes également.

Page 2/

9 O11 y=x y=lnxy=ex

Page 3/

9

I.2 Sens de variation

Propriété

La fonction logarithmenépérien est strictement croissante sur ]0;+∞[.

Démonstration:aetbsont deux réels tels que 0 fonction exponentielleest croissante.

Conséquences:

Soientaetbdeux réels de ]0;+∞[.

•lna=lnb?a=b.

•lna

•lna<0?a<1.

•lna>0?a>1.

Exercices d"application :

a) Résoudre : lnx=-5 lnx=-5?x=e-5 b) Résoudre l"équation ln(3x+2)=7 On commence par résoudre l"inéquation 3x+2>0 soitx>-2 3.

On obtient alors :x=e7-2

3. Il reste à vérifier si la solutionappartient à l"intervallede définition.

c) Résoudre l"inéquation ln(2+x)?100 Ensemble de définition :x+2>0?x>-2. Pourx>-2, ln(2+x)?100?eln(2+x)?e100?2+x?e100(car exp est croissante).

On en déduit :x?e100-2>-2 doncS=?e100-2?

d) Résoudre l"équation ln(x2-9)=lnx

On doit avoir :x2-9>0 etx>0 etx2-9=x

x

2-9>0?x2>9?x<-3 oux>3.

Finalement, l"ensemble de définition estD=]3 ;=∞[.

Pourx?D, ln(x2-9)=xln?x2-9-x=0?x2-x-9=0.

Δ=37>0; on trouvex1=1-?

37

2?D;x2=1+?

37

2>3 doncx2?D.

S=? 1+? 37
2?

II Propriétés algébriques

II.1 Relation fonctionnelle

Théorème

Pour tous réelsaetbde ]0;+∞[ : lnab=lna+lnb

Démonstration :

aetbsont deux réels strictement positifs.

On poseA=lnabetB=lna+lnb.

Alors :eA=ab;eB=elna+lnb=elna×elnb=ab=A.

Page 4/

9

II.2 Logarithme d"un quotient

Propriété

Poura>0, ln?1a?

=-lna.

Démonstration :

a×1a=1 d"o ln? a×1a? =0?lna+ln?1a? =0 d"o : ln?1a? =-lna.

Propriété

Pour tous réelsaetbde ]0;+∞[, lnab=lna-lnb

Démonstration:

lnab=ln? a×1b? =lna+ln1b=lna-lnb.

II.3 Logarithme d"un produit de nombre positifs

Propriété

Pour tous réels strictement positifsa1,a2, ...,an, ln(a1a2...an)=lna1+lna2+...lnan.

Autre écriture (symbolique) : ln?

n? i=1? =n? i=1lnai Démonstration :par récurrence surn(facile, laissée au lecteur).

II.4 Logarithme d"une puissance

Propriété

Pour tout réela>0 et tout entier relatifn, ln?an?=nlna. Démonstration :Il faut distinguer les casn>0,n=0 etn<0.
  1. logarithme décimal
  2. logarithme décimal formule
  3. logarithme décimal exercices corrigés
  4. logarithme décimal et népérien
  5. logarithme décimal cours
  6. logarithme décimal calcul
  7. logarithme décimal utilisation
  8. logarithme décimal stmg