FORMULAIRE d'INTÉGRATION Dans ce qui suit "c" est une
Dans ce qui suit "c" est une constante réelle. PRIMITIVES connues en terminale. ∫ a dx = ax + c. ∫ x dx = x2. 2. + c. ∫ xm dx =.
m
Second degré : Résumé de cours et méthodes 1 Définitions : 2
Racines : Une racine réelle dite "double" : x1 = − b. 2a . Factorisation : Pour tout x ax2 +bx+c = a(x−x1)2. Signe : ax2 +bx+
prem spe gen chap cours
MATRICES
Une matrice de taille 1 x m est appelée une matrice ligne. Exemple : Les coordonnées d'un vecteur du plan est une matrice colonne de dimension 2 x 1. a.
MatricesTESL
SECOND DEGRE (Partie 2)
Exemple : Le discriminant de l'équation 3x2 − 6x − 2 = 0 est : ∆ = (-6)2 – 4 x 3 x (-2) = 36 + 24 = 60. En effet a = 3
Secondegre ESL
ÉQUATIONS
x. EQUATION : c'est une opération « à trous » dont « les trous » sont remplacés par une 10 x 0625 - 2 = 2 x 0
Equations e
EQUATIONS INEQUATIONS
Le cas particulier de l'équation-produit (ax + b)(cx + d) = 0 équivaut à c) x2 − 9 x + 3. = 0 d) 1− x + 3 x − 3. = 2. 2 − x a) L'équation n'est pas ...
Equations Inequations
Considérons les matrices `a coefficients réels : A = - ( 2 1
AB est inversible d'inverse la matrice C. Montrer alors que B est inversible et préciser A-1. Exercice 13 – (extrait partiel novembre 2011). Soit X et Y
EC .
VECTEURS ET DROITES
2. Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr Toute droite D admet une équation de la forme ax + by + c = 0 avec a ; b. ( )≠ 0;0.
VecteursDroites
Matrices
Calculer 3A+ 2C et 5B − 4D. Trouver α tel que A− αC soit la matrice nulle. 2. Montrer que si A+ B = A alors B est la matrice nulle
ch matrices
LES FONCTIONS DE REFERENCE
x. = − + est une fonction affine. La fonction g définie sur ℝ par. 2 p104 n°9 à 12 ... f x ax b. = + . Si. 0 a > alors f est croissante sur ℝ.
Fonctions reference

1YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frSECOND DEGRE (Partie 2) I. Résolution d'une équation du second degré Définition : Une équation du second degré est une équation de la forme
ax 2 +bx+c=0 où a, b et c sont des réels avec a≠0 . Une solution de cette équation s'appelle une racine du trinôme ax 2 +bx+c . Exemple : L'équation 3x 2 -6x-2=0 est une équation du second degré. Définition : On appelle discriminant du trinôme ax 2 +bx+c , le nombre réel, noté Δ, égal à b 2 -4ac . Exemple : Le discriminant de l'équation 3x 2 -6x-2=0est : ∆ = (-6)2 - 4 x 3 x (-2) = 36 + 24 = 60. En effet, a = 3, b = -6 et c = -2. Propriété : Soit Δ le discriminant du trinôme
ax 2 +bx+c . - Si Δ < 0 : L'équation ax 2 +bx+c=0 n'a pas de solution réelle. - Si Δ = 0 : L'équation ax 2 +bx+c=0 a une unique solution : x 0 b 2a . - Si Δ > 0 : L'équation ax 2 +bx+c=0 a deux solutions distinctes : x 1 -b-Δ 2a et x 2 -b+Δ 2a. - Admis - Méthode : Résoudre une équation du second degré Vidéo https://youtu.be/youUIZ-wsYk Vidéo https://youtu.be/RhHheS2Wpyk Vidéo https://youtu.be/v6fI2RqCCiE Résoudre les équations suivantes : a)
2x 2 -x-6=0 b) 2x 2 -3x+ 9 8 =0 c) x 2 +3x+10=0 a) Calculons le discriminant de l'équation 2x 2 -x-6=0: a = 2, b = -1 et c = -6 donc Δ = b2 - 4ac = (-1)2 - 4 x 2 x (-6) = 49. Comme Δ > 0, l'équation possède deux solutions distinctes : ()
1 1493 2222
b x a 2 149
2 222
b x a
2YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frb) Calculons le discriminant de l'équation
2x 2 -3x+1YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frSECOND DEGRE (Partie 2) I. Résolution d'une équation du second degré Définition : Une équation du second degré est une équation de la forme
ax 2 +bx+c=0 où a, b et c sont des réels avec a≠0 . Une solution de cette équation s'appelle une racine du trinôme ax 2 +bx+c . Exemple : L'équation 3x 2 -6x-2=0 est une équation du second degré. Définition : On appelle discriminant du trinôme ax 2 +bx+c , le nombre réel, noté Δ, égal à b 2 -4ac . Exemple : Le discriminant de l'équation 3x 2 -6x-2=0est : ∆ = (-6)2 - 4 x 3 x (-2) = 36 + 24 = 60. En effet, a = 3, b = -6 et c = -2. Propriété : Soit Δ le discriminant du trinôme
ax 2 +bx+c . - Si Δ < 0 : L'équation ax 2 +bx+c=0 n'a pas de solution réelle. - Si Δ = 0 : L'équation ax 2 +bx+c=0 a une unique solution : x 0 b 2a . - Si Δ > 0 : L'équation ax 2 +bx+c=0 a deux solutions distinctes : x 1 -b-Δ 2a et x 2 -b+Δ 2a. - Admis - Méthode : Résoudre une équation du second degré Vidéo https://youtu.be/youUIZ-wsYk Vidéo https://youtu.be/RhHheS2Wpyk Vidéo https://youtu.be/v6fI2RqCCiE Résoudre les équations suivantes : a)
2x 2 -x-6=0 b) 2x 2 -3x+ 9 8 =0 c) x 2 +3x+10=0 a) Calculons le discriminant de l'équation 2x 2 -x-6=0: a = 2, b = -1 et c = -6 donc Δ = b2 - 4ac = (-1)2 - 4 x 2 x (-6) = 49. Comme Δ > 0, l'équation possède deux solutions distinctes : ()
1 1493 2222
b x a 2 149
2 222
b x a