Équations différentielles









Fiche exercices (avec corrigés) - Equations différentielles

Fiche exercices (avec corrigés) - Equations différentielles. Exercice 1. Donner l'ensemble des solutions des équations différentielles suivantes :.
sol TD


CALCUL DIFFÉRENTIEL ET ÉQUATIONS DIFFÉRENTIELLES

CALCUL DIFFÉRENTIEL. ET ÉQUATIONS. DIFFÉRENTIELLES. Cours et exercices corrigés. Sylvie Benzoni-Gavage. Professeur à l'université Lyon 1 
F


Équations différentielles

Exercice 4 Variation de la constante. Résoudre les équations différentielles suivantes en trouvant une solution particulière par la méthode de variation.
fic


MATH Tle D OK 2

Les corrigés sont pour confirmer leurs justes réponses ou donner On appelle équation différentielle une équation où l'inconnue est une fonction f de IR.
annales maths tle d





Équations différentielles

22 janv. 2011 2.2 Exercices . ... 2.5 Corrigé du devoir . ... cours. Toutes les équations différentielles qui seront traitées ont des solutions et.
ed


Équations différentielles ordinaires

27 mai 2016 Recueil d'exercices corrigés et aide-mémoire. ... Ce fascicule est un support pour le cours d'équations différentielles ordinaires en ...
R R L


Rappels de Mathématiques ISTIL 1ère année Corrigé

Corrigé. 1. ÉQUATIONS DIFFÉRENTIELLES ORDINAIRES. Exercice 1.1. Rappel : solution d'une équation différentielle du premier ordre. L'équation différentielle.
corrige rappels


Vibrations et Ondes (F312) : Cours et Exercices Corrigés Partie I

II-8- Exercices non corrigés ………………………………………………………………….38. III- Oscillations forcées des systèmes à un degré de liberté. III-1- Equation différentielle 
Vibrations et Ondes F Cours et Exercices Corriges Partie I Vibrations





Équations différentielles linéaires

qui est une équation à variables séparables (voir l'exercice 42). Le premier exemple ci-desous est corrigé en détail. Pour les autres on indique seulement la 
TD eq diff corr


Polycopié d'exercices et examens résolus: Mécanique du point

Ces exercices couvrent les quatres chapitres du polycopié de cours de la S'entrainer à la résolution des équations différentielles du mouvement ;.
MecDuPointMat Polycop Ex


208454 Équations différentielles Exo7

Équations différentielles

Fiche de Léa Blanc-Centi.

1 Ordre 1

Exercice 1Résoudre surRles équations différentielles suivantes:

1.y0+2y=x2(E1)

2.y0+y=2sinx(E2)

3.y0y= (x+1)ex(E3)

4.y0+y=xex+cosx(E4)

Déterminer toutes les fonctionsf:[0;1]!R, dérivables, telles que

8x2[0;1];f0(x)+f(x) =f(0)+f(1)

1.

Résoudre l"équationdifférentielle(x2+1)y0+2xy=3x2+1surR. Tracerdescourbesintégrales. Trouver

la solution vérifianty(0) =3. 2.

Résoudre l"équation dif férentielley0sinxycosx+1=0 sur]0;p[. Tracer des courbes intégrales.

Trouver la solution vérifianty(p4

) =1. de la constante :

1.y0(2x1x

)y=1 sur]0;+¥[

2.y0y=xkexp(x)surR, aveck2N

3.x(1+ln2(x))y0+2ln(x)y=1 sur]0;+¥[

On considère l"équation différentielle

y

0exey=a

Déterminer ses solutions, en précisant soigneusement leurs intervalles de définition, pour 1 1.a=0

2.a=1 (faire le changement de fonction inconnuez(x) =x+y(x))

Dans chacun des cas, construire la courbe intégrale qui passe par l"origine.

Pour les équations différentielles suivantes, trouver les solutions définies surRtout entier :

1.x2y0y=0(E1)

2.xy0+y1=0(E2)

Exercice 7Résoudre

1.y003y0+2y=0

2.y00+2y0+2y=0

3.y002y0+y=0

4.y00+y=2cos2x

On considèrey004y0+4y=d(x). Résoudre l"équation homogène, puis trouver une solution particulière

lorsqued(x) =e2x, puisd(x) =e2x. Donner la forme générale des solutions quandd(x) =12 ch(2x). Résoudre sur]0;p[l"équation différentielley00+y=cotanx, où cotanx=cosxsinx.

Résoudre les équations différentielles suivantes à l"aide du changement de variable suggéré.

1.x2y00+xy0+y=0, sur]0;+¥[, en posantx=et;

2.(1+x2)2y00+2x(1+x2)y0+my=0, surR, en posantx=tant(en fonction dem2R).

3 Pour aller plus loin

Exercice 11Équations de Bernoulli et Riccatti1.Équation de Bernoulli (a)

Montrer que l"équation de Bernoulli

y

0+a(x)y+b(x)yn=0n2Zn6=0;n6=1

se ramène à une équation linéaire par le changement de fonctionz(x) =1=y(x)n1. (b) T rouverles solutions de l"équation xy0+yxy3=0.

2.Équation de Riccati

(a) Montrer que si y0est une solution particulière de l"équation de Riccati y

0+a(x)y+b(x)y2=c(x)

alors la fonction définie paru(x) =y(x)y0(x)vérifie une équation de Bernoulli (avecn=2). (b) Résoudre x2(y0+y2) =xy1 en vérifiant d"abord quey0(x) =1x est une solution. 1. Montrer que toute solution sur Rdey0+ex2y=0 tend vers 0 en+¥. 2.

Montrer que toute solution sur Rdey00+ex2y=0 est bornée. (Indication :étudier la fonction auxiliaire

u(x) =y(x)2+ex2y0(x)2.) 1.

Résoudre sur ]0;+¥[l"équation différentiellex2y00+y=0 (utiliser le changement de variablex=et).

2. T rouvertoutes les fonctions de classe C1surRvérifiant

8x6=0;f0(x) =f1x

Indication pourl"exer cice2 NUne telle fonctionfest solution d"une équation différentielley0+y=c.Indication pourl"exer cice3 N1.xest solution particulière

2. cos est solution particulière Indication pourl"exer cice4 NSolution particulière : 1.12x 2. xk+1k+1exp(x) 3. lnx1+ln2(x)Indication pourl"exer cice5 N1. C"est une équation à variables séparées.

Indication pour

l"exer cice

6 N1.une infinité de solutions

2. une solution Indication pourl"exer cice8 NPour la fin: principe de superposition.

Indication pour

l"exer cice

9 NUtiliser la méthode de variation de la constante.

Indication pour

l"exer cice

11 N1.(a) Se ramener à

11nz0+a(x)z+b(x) =0.

(b)y=1plx2+2xouy=0. 2. (a)

Remplacer yparu+y0.

(b)y=1x +1xlnjxj+lxouy=1x .4

Correction del"exer cice1 N1.Il s"agit d"une équation dif férentiellelinéaire d"ordre 1, à coef ficientsconstants, a vecsecond membre.

Oncommenceparrésoudrel"équationhomogèneassociéey0+2y=0: lessolutionssontlesy(x)=le2x, l2R.

Il suffit ensuite de trouver une solution particulière de(E1). Le second membre étant polynomial de degré

2, on cherche une solution particulière de la même forme:

y

0(x) =ax2+bx+cest solution de(E1)

() 8x2R;y00(x)+2y0(x) =x2 () 8x2R;2ax2+(2a+2b)x+b+2c=x2 Ainsi, en identifiant les coefficients, on voit quey0(x) =12 x212 x+14 convient.

Les solutions de(E1)sont obtenues en faisant la somme de cette solution particulière et des solutions de

l"équation homogène: y(x) =12 x212 x+14 +le2x(x2R) oùlest un paramètre réel. 2.

Il s"agit d"une équation dif férentiellelinéaire d"ordre 1, à coef ficientsconstants, a vecsecond membre.

Exo7

Équations différentielles

Fiche de Léa Blanc-Centi.

1 Ordre 1

Exercice 1Résoudre surRles équations différentielles suivantes:

1.y0+2y=x2(E1)

2.y0+y=2sinx(E2)

3.y0y= (x+1)ex(E3)

4.y0+y=xex+cosx(E4)

Déterminer toutes les fonctionsf:[0;1]!R, dérivables, telles que

8x2[0;1];f0(x)+f(x) =f(0)+f(1)

1.

Résoudre l"équationdifférentielle(x2+1)y0+2xy=3x2+1surR. Tracerdescourbesintégrales. Trouver

la solution vérifianty(0) =3. 2.

Résoudre l"équation dif férentielley0sinxycosx+1=0 sur]0;p[. Tracer des courbes intégrales.

Trouver la solution vérifianty(p4

) =1. de la constante :

1.y0(2x1x

)y=1 sur]0;+¥[

2.y0y=xkexp(x)surR, aveck2N

3.x(1+ln2(x))y0+2ln(x)y=1 sur]0;+¥[

On considère l"équation différentielle

y

0exey=a

Déterminer ses solutions, en précisant soigneusement leurs intervalles de définition, pour 1 1.a=0

2.a=1 (faire le changement de fonction inconnuez(x) =x+y(x))

Dans chacun des cas, construire la courbe intégrale qui passe par l"origine.

Pour les équations différentielles suivantes, trouver les solutions définies surRtout entier :

1.x2y0y=0(E1)

2.xy0+y1=0(E2)

Exercice 7Résoudre

1.y003y0+2y=0

2.y00+2y0+2y=0

3.y002y0+y=0

4.y00+y=2cos2x

On considèrey004y0+4y=d(x). Résoudre l"équation homogène, puis trouver une solution particulière

lorsqued(x) =e2x, puisd(x) =e2x. Donner la forme générale des solutions quandd(x) =12 ch(2x). Résoudre sur]0;p[l"équation différentielley00+y=cotanx, où cotanx=cosxsinx.

Résoudre les équations différentielles suivantes à l"aide du changement de variable suggéré.

1.x2y00+xy0+y=0, sur]0;+¥[, en posantx=et;

2.(1+x2)2y00+2x(1+x2)y0+my=0, surR, en posantx=tant(en fonction dem2R).

3 Pour aller plus loin

Exercice 11Équations de Bernoulli et Riccatti1.Équation de Bernoulli (a)

Montrer que l"équation de Bernoulli

y

0+a(x)y+b(x)yn=0n2Zn6=0;n6=1

se ramène à une équation linéaire par le changement de fonctionz(x) =1=y(x)n1. (b) T rouverles solutions de l"équation xy0+yxy3=0.

2.Équation de Riccati

(a) Montrer que si y0est une solution particulière de l"équation de Riccati y

0+a(x)y+b(x)y2=c(x)

alors la fonction définie paru(x) =y(x)y0(x)vérifie une équation de Bernoulli (avecn=2). (b) Résoudre x2(y0+y2) =xy1 en vérifiant d"abord quey0(x) =1x est une solution. 1. Montrer que toute solution sur Rdey0+ex2y=0 tend vers 0 en+¥. 2.

Montrer que toute solution sur Rdey00+ex2y=0 est bornée. (Indication :étudier la fonction auxiliaire

u(x) =y(x)2+ex2y0(x)2.) 1.

Résoudre sur ]0;+¥[l"équation différentiellex2y00+y=0 (utiliser le changement de variablex=et).

2. T rouvertoutes les fonctions de classe C1surRvérifiant

8x6=0;f0(x) =f1x

Indication pourl"exer cice2 NUne telle fonctionfest solution d"une équation différentielley0+y=c.Indication pourl"exer cice3 N1.xest solution particulière

2. cos est solution particulière Indication pourl"exer cice4 NSolution particulière : 1.12x 2. xk+1k+1exp(x) 3. lnx1+ln2(x)Indication pourl"exer cice5 N1. C"est une équation à variables séparées.

Indication pour

l"exer cice

6 N1.une infinité de solutions

2. une solution Indication pourl"exer cice8 NPour la fin: principe de superposition.

Indication pour

l"exer cice

9 NUtiliser la méthode de variation de la constante.

Indication pour

l"exer cice

11 N1.(a) Se ramener à

11nz0+a(x)z+b(x) =0.

(b)y=1plx2+2xouy=0. 2. (a)

Remplacer yparu+y0.

(b)y=1x +1xlnjxj+lxouy=1x .4

Correction del"exer cice1 N1.Il s"agit d"une équation dif férentiellelinéaire d"ordre 1, à coef ficientsconstants, a vecsecond membre.

Oncommenceparrésoudrel"équationhomogèneassociéey0+2y=0: lessolutionssontlesy(x)=le2x, l2R.

Il suffit ensuite de trouver une solution particulière de(E1). Le second membre étant polynomial de degré

2, on cherche une solution particulière de la même forme:

y

0(x) =ax2+bx+cest solution de(E1)

() 8x2R;y00(x)+2y0(x) =x2 () 8x2R;2ax2+(2a+2b)x+b+2c=x2 Ainsi, en identifiant les coefficients, on voit quey0(x) =12 x212 x+14 convient.

Les solutions de(E1)sont obtenues en faisant la somme de cette solution particulière et des solutions de

l"équation homogène: y(x) =12 x212 x+14 +le2x(x2R) oùlest un paramètre réel. 2.

Il s"agit d"une équation dif férentiellelinéaire d"ordre 1, à coef ficientsconstants, a vecsecond membre.