FONCTION LOGARITHME DÉCIMAL









Fonctions logarithmes népérien et décimal

La fonction logarithme népérien notée ln
TS courslogarithme


La fonction logarithme décimal

La fonction logarithme décimal. Propriétés analytiques. Pour x strictement positif log(x) = ln(x) ln(10). (avec ln(10) = 2
LogarithmeDecimal


CHAPITRE 11 : FONCTION NEPERIEN. FONCTION LOGARITHME

FONCTION. LOGARITHME DECIMAL. 1. Fonction népérien (logarithme d'une fonction composée). Théorème. Si u 
cours chap


FONCTION LOGARITHME NEPERIEN

fonction logarithme décimale notée log est définie par : log(x) = lnx ln10. Conséquences : a) y = lnx avec x > 0 ⇔ x = ey b) ln1= 0 ; lne = 1 ; ln.
LogTS





FONCTION LOGARITHME DÉCIMAL

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. FONCTION LOGARITHME DÉCIMAL. En 1614 un mathématicien écossais
LogTT


FONCTION LOGARITHME NÉPÉRIEN (Partie 1)

Ceci peut paraître dérisoire aujourd'hui mais il faut comprendre qu'à cette époque
LogT


LOGARITHME NEPERIEN

On note a = ln b ce qui se lit logarithme népérien de b . On appelle fonction logarithme décimal et on note log la fonction définie sur ] 0 ...
ln


Logarithme décimal et acoustique (calculatrice algorithme)

Votre voisin François chanteur amateur
logaritme decimal et acoustique





Etude des besoins mathématiques en physique et en chimie

https://pedagogie.ac-orleans-tours.fr/fileadmin/user_upload/maths/Dossiers_acad%C3%A9miques/Progressions/TermS/2-Lien_2_Logarithmes_pour_le_physicien.pdf


Formulaire : La fonction logarithme népérien

Formulaire : La fonction logarithme népérien. • Fonction continue et dérivable sur ]0;+∞[ Propriétés de la fonction logarithme décimal. • log(10) = 1.
Formulaire logarithme


210882 FONCTION LOGARITHME DÉCIMAL 1 YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr

FONCTION LOGARITHME DÉCIMAL

En 1614, un mathématicien écossais, John Napier (1550 ; 1617) ci-contre, plus connu sous le nom francisé de Neper publie " Mirifici logarithmorum canonis descriptio ». Dans cet ouvrage, qui est la finalité d'un travail de 20 ans, Neper présente un outil permettant de simplifier les calculs opératoires : le logarithme. Neper construit le mot à partir des mots grecs " logos » (logique) et arithmos (nombre). Toutefois cet outil ne tr ouvera son essor qu'après la mort de Neper. Les mathématiciens anglais Henri Briggs (1561 ; 1630) et William Oughtred (1574 ;

1660) reprennent et prolongent les travaux de Neper.

Les mathématiciens de l'époque établissent alors des tables de logarithmes de plus en plus précises.

L'intérêt d'établir ces tables logarithmiques est de permettre de substituer une multiplication par une addition

(partie 2). Ceci peut paraître dérisoire aujourd'hui, mais il faut comprendre qu'à cette époque, les calculatrices

n'existent évidemment pas, les nombres décimaux ne sont pas d'usage courant et les opérations posées telles

que nous les utilisons ne sont pas encore connues. Et pourtant l'astronomie, la navigation ou le commerce

demandent d'effectuer des opérations de plus en plus complexes. Partie 1 : Fonction exponentielle de base 10 et fonction logarithme décimal

1) Définition

Soit la fonction définie sur ℝ par =10

L'équation 10

=, avec >0, admet une unique solution dans ℝ.

Cette solution se note log().

Définition : On appelle logarithme décimal d'un réel strictement positif , l'unique solution

de l'équation 10 =. On la note log(). La fonction logarithme décimal, notée log, est la fonction : ⟼log() 2 YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr

Conséquences :

a) Pour >0 : 10 = revient à écrire =log() b) log10 c) Pour >0 : 10

2) Sens de variation

Propriété : La fonction logarithme décimal ⟼log() est croissante sur

0;+∞

Valeurs particulières : log(1)=0 ; log(10)=1 ; log6 1 10 7=-1 Partie 2 : Propriétés de la fonction logarithme décimal Méthode : Simplifier une expression contenant des logarithmes

Vidéo https://youtu.be/qdYQQlbz-AQ

Simplifier les expressions suivantes :

=log2-

2=+log2+

2= =2log()+log(2)-4log()

=log(10 1 5 D

Correction

=log2-

2=+log2+

2= =log62-

2=×2+

2=7 =log 4-2 =log(2) =2log()+log(2)-4log() =log( )+log(2)-log

Pour a > 0 et b > 0 :

log =log()+log()

Pour a > 0 et n entier naturel :

log( )=log() 3 YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr =log(

×2)-log

=log 3 2 ×2 3 4 I =log6 2 9 7 =log(10 1 5 D =log(10 )-log(5) =log(10)-log(5) =×1-log(5) =-log(5) Remarque : Voici comment Neper transformait un produit en somme : Celui qui aurait, par exemple, à effectuer 6×62, appliquerait la formule précédente, soit : log 6×62 =log 6 +log 62
≈1,556+1,7924 (à, l'aide de la table ci-contre) L'addition étant beaucoup plus simple à effectuer que la multiplication, on trouve facilement : (6×62)≈,487 En cherchant à nouveau dans la table le logarithme égal à ,487, on trouve 222, soit : 6×62=222.

Partie 3 : Équations et inéquations

Méthode : Résoudre une équation ou une inéquation

Vidéo https://youtu.be/WD2J0woQom0

Vidéo https://youtu.be/scxbiV4VEak

1) Résoudre dans ℝ l'équation : 6

=2

2) Résoudre dans

0;+∞

l'équation :

3) 8 augmentations successives de % correspondent à une augmentation globale de 30 %.

Donner une valeur approchée du taux moyen .

Correction

1) 6 =2 log(6 )=log(2) log(6)=log(2)

Pour a > 0 et b > 0 :

log6

7=log()-log()

Pour b > 0 :

log6 1

7=-log()

log()=log()revientà= 4 YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr log(2) log(6)

2)

log( )5log() log()< 1 5 log() log()L'ensemble solution est ]0;

Remarque :

se lit "racine cinquième de 3" et peut se noter

3) Le problème revient à résoudre dans

0;+∞

l'équation : 100
D =1, 100
D =log(1,) 100

D=log(1,)

100
D= 1 8 log(1,) 100
1 YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr

FONCTION LOGARITHME DÉCIMAL

En 1614, un mathématicien écossais, John Napier (1550 ; 1617) ci-contre, plus connu sous le nom francisé de Neper publie " Mirifici logarithmorum canonis descriptio ». Dans cet ouvrage, qui est la finalité d'un travail de 20 ans, Neper présente un outil permettant de simplifier les calculs opératoires : le logarithme. Neper construit le mot à partir des mots grecs " logos » (logique) et arithmos (nombre). Toutefois cet outil ne tr ouvera son essor qu'après la mort de Neper. Les mathématiciens anglais Henri Briggs (1561 ; 1630) et William Oughtred (1574 ;

1660) reprennent et prolongent les travaux de Neper.

Les mathématiciens de l'époque établissent alors des tables de logarithmes de plus en plus précises.

L'intérêt d'établir ces tables logarithmiques est de permettre de substituer une multiplication par une addition

(partie 2). Ceci peut paraître dérisoire aujourd'hui, mais il faut comprendre qu'à cette époque, les calculatrices

n'existent évidemment pas, les nombres décimaux ne sont pas d'usage courant et les opérations posées telles

que nous les utilisons ne sont pas encore connues. Et pourtant l'astronomie, la navigation ou le commerce

demandent d'effectuer des opérations de plus en plus complexes. Partie 1 : Fonction exponentielle de base 10 et fonction logarithme décimal

1) Définition

Soit la fonction définie sur ℝ par =10

L'équation 10

=, avec >0, admet une unique solution dans ℝ.

Cette solution se note log().

Définition : On appelle logarithme décimal d'un réel strictement positif , l'unique solution

de l'équation 10 =. On la note log(). La fonction logarithme décimal, notée log, est la fonction : ⟼log() 2 YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr

Conséquences :

a) Pour >0 : 10 = revient à écrire =log() b) log10 c) Pour >0 : 10

2) Sens de variation

Propriété : La fonction logarithme décimal ⟼log() est croissante sur

0;+∞

Valeurs particulières : log(1)=0 ; log(10)=1 ; log6 1 10 7=-1 Partie 2 : Propriétés de la fonction logarithme décimal Méthode : Simplifier une expression contenant des logarithmes

Vidéo https://youtu.be/qdYQQlbz-AQ

Simplifier les expressions suivantes :

=log2-

2=+log2+

2= =2log()+log(2)-4log()

=log(10 1 5 D

Correction

=log2-

2=+log2+

2= =log62-

2=×2+

2=7 =log 4-2 =log(2) =2log()+log(2)-4log() =log( )+log(2)-log

Pour a > 0 et b > 0 :

log =log()+log()

Pour a > 0 et n entier naturel :

log( )=log() 3 YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr =log(

×2)-log

=log 3 2 ×2 3 4 I =log6 2 9 7 =log(10 1 5 D =log(10 )-log(5) =log(10)-log(5) =×1-log(5) =-log(5) Remarque : Voici comment Neper transformait un produit en somme : Celui qui aurait, par exemple, à effectuer 6×62, appliquerait la formule précédente, soit : log 6×62 =log 6 +log 62
≈1,556+1,7924 (à, l'aide de la table ci-contre) L'addition étant beaucoup plus simple à effectuer que la multiplication, on trouve facilement : (6×62)≈,487 En cherchant à nouveau dans la table le logarithme égal à ,487, on trouve 222, soit : 6×62=222.

Partie 3 : Équations et inéquations

Méthode : Résoudre une équation ou une inéquation

Vidéo https://youtu.be/WD2J0woQom0

Vidéo https://youtu.be/scxbiV4VEak

1) Résoudre dans ℝ l'équation : 6

=2

2) Résoudre dans

0;+∞

l'équation :

3) 8 augmentations successives de % correspondent à une augmentation globale de 30 %.

Donner une valeur approchée du taux moyen .

Correction

1) 6 =2 log(6 )=log(2) log(6)=log(2)

Pour a > 0 et b > 0 :

log6

7=log()-log()

Pour b > 0 :

log6 1

7=-log()

log()=log()revientà= 4 YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr log(2) log(6)

2)

log( )5log() log()< 1 5 log() log()L'ensemble solution est ]0;

Remarque :

se lit "racine cinquième de 3" et peut se noter

3) Le problème revient à résoudre dans

0;+∞

l'équation : 100
D =1, 100
D =log(1,) 100

D=log(1,)

100
D= 1 8 log(1,) 100

  1. relation logarithme décimal et népérien