[PDF] [PDF] Le rang 31 jan 2006 · Définition





Previous PDF Next PDF



Rang et déterminant des matrices

4 sept. 2019 La suppression d'une colonne nulle ou d'une ligne nulle préserve le rang. Page 17. Calcul pratique du rang d'une matrice : pivot de Gauss ...



Déterminants rangs

http://www.geodiff.ulg.ac.be/geometrie/Geom6printx4.pdf



Applications linéaires matrices

http://licence-math.univ-lyon1.fr/lib/exe/fetch.php?media=exomaths:exercices_corriges_application_lineaire_et_determinants.pdf





LES DÉTERMINANTS DE MATRICES

Évaluer le déterminant d'une matrice 3 3 sera maintenant possible. Nous procéderons en réduisant celui-ci en une série de déterminants 2 2 pour lesquels le.



Déterminants

Ces vecteurs sont linéairement indépendants. Comme rang(A) ? r + 1 il existe un vecteur-colonne. Vir+1 de la matrice A tel que le syst` 



Cours de mathématiques - Exo7

On peut aussi définir le déterminant d'une matrice A. Le déterminant permet de Le rang d'une matrice est la dimension de l'espace vectoriel engendré par ...



Matrices et déterminants 1 Matrices

La colonne j est cosj C + sinj S. Ainsi la matrice A est de rang 2. 4 Calcul de l'inverse d'une matrice carrée inversible.



PCP - DETERMINANTS (COURS-EXERCICES). YjY 1. Déterminant

12 févr. 2009 colonnes). – Une matrice carrée A ? Mn(C) est inversible si et seulement si elle est de rang maximal n. – Pour f ...



Chapitre 5 : Le déterminant dune matrice

Le rang ne change pas par des opérations élémentaires des lignes et colonnes donc on peut le calculer par la méthode de Gauss. Une autre mani`ere de le 



Rang et déterminant des matrices - LaBRI

4 sept 2019 · Les opérations élémentaires conservent le rang de la matrice La suppression d'une colonne nulle ou d'une ligne nulle préserve le rang Page 17 



[PDF] Rang des matrices

Le rang d'une matrice est égal au nombre de ses lignes sauf si l'une d'entre elles est combinaison linéaire des autres Page 7 Matrices faciles On dira qu'une 



[PDF] Le rang

31 jan 2006 · Définition Le rang d'une matrice A est le nombre de lignes non nulles dans sa forme échelonnée en lignes On le note rg A



[PDF] LES DÉTERMINANTS DE MATRICES

3- Calcul du déterminant pour une matrice Considérons la matrice de dimension 2 2 : Le déterminant de la matrice est définie par la relation



Fiche explicative de la leçon : Rang dune matrice : les déterminants

On rappelle que le rang d'une matrice ???? est égal au nombre de lignes/colonnes de la plus grande sous-matrice carrée de ???? de déterminant non nul Cette matrice 



[PDF] Déterminants - Exo7 - Cours de mathématiques

Le rang d'une matrice est la dimension de l'espace vectoriel engendré par les vecteurs colonnes C'est donc le nombre maximum de vecteurs colonnes linéairement 



[PDF] Rang dune matrice Cours et exercices

Rang d'une matrice Cours et exercices I Définitions et premiers exemples Définition 1 Soient n et p deux entiers naturels non nuls et A ? Mnp (K)



[PDF] Déterminants rangs systèmes linéaires Sous matrices Un cas

21 fév 2013 · Déterminants rangs systèmes linéaires Pierre Mathonet déterminant d'une sous-matrice de A à p lignes et p colonnes ; 2 Si A ? R



[PDF] 1 Quest-ce que le déterminant dune matrice ?

3 A quoi sert un déterminant ? 3 1 Le déterminant tient son rang L'une des applications principales des déterminants est de mesurer la liberté d'une 



[PDF] Chapitre 5 : Le déterminant dune matrice

Le rang est r s'il existe une sous-matrice de taille r × r de déterminant = 0 mais pour chaque sous-matrice de taille k>r le determinant est = 0 Par exemple 

  • Comment déterminer le rang d'une matrice ?

    Le rang d'une matrice de taille �� × �� , �� , noté, r g ( �� ) , est égal au nombre de lignes/colonnes de la plus grand sous-matrice carrée de �� (qui peut être �� elle-même) de déterminant non nul.
  • Comment montrer qu'une matrice est de rang 1 ?

    Une matrice A de Mn(K) est de rang 1 si et seulement si il existe une matrice non nulle C de Mn,1(K) et une matrice non nulle L de M1,n(K) telles que : A = CL.
  • Quel est le rang d'une matrice nulle ?

    En mathématiques, et en particulier en alg?re linéaire, une matrice nulle est une matrice dont tous les coefficients sont nuls. Des exemples de matrices nulles sont : ayant des coefficients dans un anneau donné ; ainsi, lorsque le contexte apparaît clairement, 0 désigne la matrice nulle.
  • Si aucune colonne n'est linéairement dépendante des autres colonnes, le rang de la matrice est égal au nombre de colonnes de la matrice et la matrice est dite de rang (colonne) plein. Si le rang est inférieur au nombre de colonnes, la matrice est dite de rang (colonne) incomplet, et la matrice est dite singulière.
L1 MASS : Alg`ebre Lin´eaireCours 31 janvier 2006

Le rang

On rappelle une d´efinition du cours pr´ec´edent : D´efinition.Une matriceBest dite´echelonn´ee en lignessi - chaque ligne non nulle deBcommence avec strictement plus de 0 que la ligne pr´ec´edente, et - les lignes nulles (ne contenant que des 0) deBviennent en bas apr`es les lignes non nulles.

Toute matriceApeut se r´eduire `a une matrice ´echelonn´ee en lignesBpar une suite d"op´erations

´el´ementaires sur les lignes. On appelleBlaforme ´echelonn´ee en lignesdeA. Une des concepts fondamentaux dans l"alg`ebre lin´eaire est lerangd"une matrice. Il admet de plusieurs d´efinitions ´equivalentes. En voici la premi`ere.

D´efinition.Lerangd"une matriceAest le nombre de lignes non nulles dans sa forme ´echelonn´ee

en lignes. On le note rgA.

Par exemple la matrice suivanteAse r´eduit en sa forme ´echelonn´ee en lignes par les pivotages

A=( (1-3 6 2

2-5 10 3

3-8 17 4)

L2←L2-2L1--------→L

3←L3-3L1(

(1-3 6 2

0 1-2-1

0 1-1-2)

L3←L3-L2-------→(

(1-3 6 2

0 1-2-1

0 0 1-1)

Donc on a rgA= 3. Pour la matrice suivante

C=( (1 3 2 1 4 1

0 1-1)

L2←L2-L1-------→(

(1 3 2 0 1-1

0 1-1)

L3←L3-L2-------→(

(1 3 2 0 1-1

0 0 0)

on a rgC= 2.

Th´eor`eme 1.Pour toute matriceAon a

Id´ee de la preuve.En r´eduisant la matriceAen une matrice ´echelonn´ee en lignes similaire `a celle-ci

((13 0 4 5

021 3 8

0 0 072

0 0 0 0 0)

lespivots(les premiers coefficients non nuls des lignes non nulles) sont danslignes distincteset dans descolonnes distinctes. Donc on a

Le nombre de pivots est aussi le nombre de lignes non nulles de la forme ´echelonn´ee deA, d"o`u

nombre de pivots = rgA.

La matrice des coefficients

On peut associer une matrice `a chaque membre d"un syst`eme lin´eaire. Pour le syst`eme ?x-3y+ 6z+ 2w=-1,

2x-5y+ 10z+ 3w= 0,

3x-8y+ 17z+ 4w= 1,

on a des matrices A=( (1-3 6 2

2-5 10 3

3-8 17 4)

,b=( (-1 0 1) avecAlamatrice des coefficientsregroupant les coefficients des variables du membre de gauche du syst`eme, et le vecteur colonnebcontient le membre de droite. Quand on met les deux ensemble, on a lamatrice augment´eequ"on a d´ej`a vue

A=?A??b?=(

(1-3 6 2

2-5 10 3

3-8 17 4?

?????-1 0 1)

Le rang et les syst`emes lin´eaires

On va ´etudier les syst`emes lin´eaires en consid´erant le membre de gauche comme fixe, mais

le membre de droite comme ´eventuellement variable. Dans cette optique, il est convenable de

consid´erer le rang d"un syst`eme lin´eaire comme d´ependant uniquement de son membre de gauche.

D"o`u :

D´efinition.Lerangd"un syst`eme lin´eaire est le rang de sa matrice des coefficientsA.

Par exemple, le rang du syst`eme (‡) est 3, selon les calculs faits sur la page pr´ec´edente.

Pour r´esoudre un syst`eme lin´eaire on fait des op´erations ´el´ementaires et pivotages soit sur

les ´equations, soit sur la matrice augment´ee?A. A la fin, la forme ´echelonn´ee du syst`eme lin´eaire

correspond `a la forme ´echelonn´ee en lignes de?A, et le membre gauche du syst`eme ´echelonn´e

correspond `a la forme ´echelonn´ee en lignes de la matrice des coeffientsA. On en d´eduit :rg

?A= nombre de lignes du syst`eme ´echelonn´e non de la forme 0 = 0.

rgA= nombre de lignes du syst`eme ´echelonn´e non de la forme 0 = 0 ou 0 =caveccnon nul.Ce que nous connaissons sur la solution des syst`emes lin´eaires se traduit par les parties (a) et

(b) du th´eor`eme suivant : Th´eor`eme 2.Consid´erons un syst`eme lin´eaire dem´equationsenninconnuesavec matrice des coefficientsA, membre de droiteb, et matrice augment´ee?A=?A??b?. (a)Pour un membre de droitebparticulier, le syst`eme lin´eaire a une solution si et seulement si on argA= rg?A. (b)Quand elles existent, les solutions d´ependent den-rgAparam`etres ind´ependants. La partie (c) se d´eduit du Th´eor`eme 1 ci-dessus.

Quand on r´eduit la matrice augment´ee d"un syst`eme lin´eaire `a sa forme ´echelonn´ee en lignes,

parfois on termine avec une matrice contenant autant de pivots que de lignes dans la partie gauche de la matrice, comme celle-ci :( (13 4 15 024-6

0 0 01?

2 On peut r´esoudre un tel syst`eme ´echelonn´e quelque soit le membre de droite.

Mais parfois on termine avec une matrice augment´ee ´echelonn´ee avec moins de pivots que de

lignes dans la partie gauche, comme celle-ci : (13 4 15 024-6

0 0 0 0?

La derni`ere ligne correspond `a une ´equation de la forme 0 =?, o`u le?d´epend du membre de

droitebdu syst`eme non ´echelonn´e du d´epart. Pour certainsb, le?prend la valeur 0, et le syst`eme

a des solutions. Pour d"autresb, le?est non nul, et le syst`eme n"a pas de solutions. Or quand on a un syst`eme lin´eaire dem´equationsenninconnuesavec matrice des coeffi-

cientsA, le nombre de pivots dans la partie gauche de la matrice ´echelonn´ee est rgA, et le nombre

de lignes estm. Donc les deux situations ci-dessus correspondent `a d"abord rgA=m, et ensuite rgA < m. On a donc le th´eor`eme suivant : Th´eor`eme 3.Consid´erons un syst`eme lin´eaire dem´equationsenninconnuesavec matrice des coefficientsA, membre de droiteb, et matrice augment´ee?A=?A??b?. (a)Quand on argA=m, le syst`eme lin´eaire a des solutions quelque soit le membre de droite b. (b)Quand on argA < m, le syst`eme lin´eaire a des solutions pour certains membres de droite bmais pas pour tout membre de droite. 3quotesdbs_dbs4.pdfusesText_7
[PDF] rang d'une matrice definition

[PDF] cours moment d'une force

[PDF] exercice physique moment d'une force

[PDF] exercice moment d'une force bac pro

[PDF] calcul moment force

[PDF] exercices sur le moment d'une force pdf

[PDF] exercice corrigé bras de levier

[PDF] exercices moment d'une force cap

[PDF] initiation volley ball+exercices

[PDF] rang d'une matrice 2x2

[PDF] moment de force formule

[PDF] fiche de situation familiale crous rattachement fiscal comment remplir

[PDF] modele fiche situation familiale

[PDF] fiche de situation familiale exemple

[PDF] couple moment