[PDF] SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES





Previous PDF Next PDF



GÉNÉRALITÉS SUR LES SUITES

1) Définition d'une suite numérique n = 2n qui définit la suite des nombres pairs. ... Contrairement à une suite définie par une formule explicite ...



Suites 1 Convergence

Calculer la limite de la suite définie par : u0 = 4 et pour tout n ? N un+1 = 4un +5 un +3 .



Exercice 1. On définit la suite (u n) par u0 = 2 et un+1 = u2 n + 2. 1

Pour quels réels a cette suite est bien définie ? 2. Si (un) converge quelles sont les limites possibles ? 3. Étudier la convergence en fonction du param`etre 



SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES

u2 = 13 u3 = 18. Une telle suite est appelée une suite arithmétique de raison 5 et de premier terme 3. La suite est donc définie par : 0.



Terminale S - Etude de limites de suites définies par récurrence

1) Définition. Une suite définie par récurrence est une suite définie par son premier terme et par une relation de récurrence qui définit chaque terme à 



Chapitre 1 Suites réelles et complexes

Une méthode naturelle est de construire une suite (un) dont on sait calculer les termes et qui converge vers ?. Alors par définition de la convergence



Suites

En déduire limn?+? un limn?+? vnet limn?+? wn. Correction ?. [005230]. Exercice 12 ***. Montrer que les suites définies par la donnée 



Corrigé du TD no 11

Pour justifier rigoureusement ce résultat soit ? un nombre réel



Suites : exercices

Exercice 1 : Soit (Un) la suite définie par Un = n2 ?n+1. a) Calculer U0 et U10.



LES SUITES (Partie 2)

LES SUITES (Partie 2). I. Limites et comparaison. 1) Théorèmes de comparaison. Théorème 1 : Soit (un) et (vn) deux suites définies sur ?.

1YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frSUITES ARITHMETIQUES ET SUITES GEOMETRIQUES Vidéo https://youtu.be/pHq6oClOylU I. Suites arithmétiques 1) Définition Exemple : Considérons une suite numérique (un) où la différence entre un terme et son précédent reste constante et égale à 5. Si le premier terme est égal à 3, les premiers termes successifs sont : u0 = 3, u1 = 8, u2 = 13, u3 = 18. Une telle suite est appelée une suite arithmétique de raison 5 et de premier terme 3. La suite est donc définie par : 0

1 3 5 nn u uu

. Définition : Une suite (un) est une suite arithmétique s'il existe un nombre r tel que pour tout entier n, on a : 1nn

uur

. Le nombre r est appelé raison de la suite. Méthode : Démontrer si une suite est arithmétique Vidéo https://youtu.be/YCokWYcBBOk 1) La suite (un) définie par : 79

n un=- est-elle arithmétique ? 2) La suite (vn) définie par : 2 3 n vn=+ est-elle arithmétique ? 1) () 1

7917 979 9799

nn uunn nn

. La différence entre un terme et son précédent reste constante et égale à -9. (un) est une suite arithmétique de raison -9. 2) ()

2 222
1

1332 133 21

nn vvnnnnn n

. La différence entre un terme et son précédent ne reste pas constante. (vn) n'est pas une suite arithmétique. Vidéo https://youtu.be/6O0KhPMHvBA

2YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frPropriété : (un) est une suite arithmétique de raison r et de premier terme u0. Pour tout entier naturel n, on a : 0n

uunr=+

. Démonstration : La suite arithmétique (un) de raison r et de premier terme u0 vérifie la relation 1nn

uur . En calculant les premiers termes : 10 uur=+ 2100

2uururrur=+=++= +

3200

23uururrur=+=++= +

100
(1) nn uuru nrrunr

. Méthode : Déterminer la raison et le premier terme d'une suite arithmétique Vidéo https://youtu.be/iEuoMgBblz4 Considérons la suite arithmétique (un) tel que

u 5 =7 et u 9 =19

. 1) Déterminer la raison et le premier terme de la suite (un). 2) Exprimer un en fonction de n. 1) Les termes de la suite sont de la forme

u n =u 0 +nr

Ainsi 50

57uur=+=

et 90

919uur=+=

. On soustrayant membre à membre, on obtient :

5r-9r=7-19

donc r=3 . Comme u 0 +5r=7 , on a : u 0 +5×3=7 et donc : u 0 =-8 . 2) 0n uunr=+ soit 83 n un=-+× ou encore 38 n un=-

2) Variations Propriété : (un) est une suite arithmétique de raison r. - Si r > 0 alors la suite (un) est croissante. - Si r < 0 alors la suite (un) est décroissante. Démonstration :

u n+1 -u n =u n +r-u n =r . - Si r > 0 alors u n+1 -u n >0 et la suite (un) est croissante. - Si r < 0 alors u n+1 -u n <0 et la suite (un) est décroissante. Exemple : Vidéo https://youtu.be/R3sHNwOb02M

3YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frLa suite arithmétique (un) définie par

u n =5-4n

est décroissante car de raison négative et égale à -4. 3) Représentation graphique Les points de la représentation graphique d'une suite arithmétique sont alignés. Exemple : On a représenté ci-dessous la suite de raison -0,5 et de premier terme 4. II. Suites géométriques 1) Définition Exemple : Considérons une suite numérique (un) où le rapport entre un terme et son précédent reste constant et égale à 2. Si le premier terme est égal à 5, les premiers termes successifs sont : u0 = 5, u1 = 10, u2 = 20, u3 = 40. Une telle suite est appelée une suite géométrique de raison 2 et de premier terme 5. La suite est donc définie par :

u 0 =5 u n+1 =2u n

Vidéo https://youtu.be/WTmdtbQpa0c Définition : Une suite (un) est une suite géométrique s'il existe un nombre q tel que pour tout entier n, on a :

u n+1 =q×u n . Le nombre q est appelé raison de la suite.

4YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frMéthode : Démontrer si une suite est géométrique Vidéo https://youtu.be/YPbEHxuMaeQ La suite (un) définie par :

u n =3×5 n est-elle géométrique ? u n+1 u n

3×5

n+1

3×5

n 5 n+1 5 n =5 n+1-n =5

. Le rapport entre un terme et son précédent reste constant et égale à 5. (un) est une suite géométrique de raison 5 et de premier terme

u 0 =3×5 0 =3

. Exemple concret : On place un capital de 500€ sur un compte dont les intérêts annuels s'élèvent à 4%. Chaque année, le capital est multiplié par 1,04. Ce capital suit une progression géométrique de raison 1,04. On a ainsi : u

1 =1,04×500=520 u 2 =1,04×520=540,80 u 3 =1,04×540,80=562,432

De manière générale : u

n+1 =1,04×u n avec u 0 =500 On peut également exprimer un en fonction de n : u n =500×1,04 n

Propriété : (un) est une suite géométrique de raison q et de premier terme u0. Pour tout entier naturel n, on a : 0

n n uuq=×

. Démonstration : La suite géométrique (un) de raison q et de premier terme u0 vérifie la relation

u n+1 =q×u n . En calculant les premiers termes : u 1 =q×u 0 u 2 =q×u 1 =q×q×u 0 =q 2 ×u 0 u 3 =q×u 2 =q×q 2 ×u 0 =q 3 ×u 0 u n =q×u n-1 =q×q n-1 u 0 =q n ×u 0

. Méthode : Déterminer la raison et le premier terme d'une suite géométrique Vidéo https://youtu.be/wUfleWpRr10 Considérons la suite géométrique (un) tel que

u 4 =8 et u 7 =512

. Déterminer la raison et le premier terme de la suite (un). Les termes de la suite sont de la forme

u n =q n ×u 0 Ainsi u 4 =q 4 ×u 0 =8 etquotesdbs_dbs18.pdfusesText_24
[PDF] La Suite numérique

[PDF] La supercificie de la Terre est environ de 5,1 x 10 puissance 8 km²

[PDF] La supersitition

[PDF] la superstition

[PDF] La suprématie militaire et diplmatique

[PDF] la surface (fraction)

[PDF] la surface du globe

[PDF] La surveillance la prévision et la prévention

[PDF] la survie sur l ile p 182 francaix

[PDF] la syllabation en poésie

[PDF] La symbolique chevaleresque dans l'enluminure

[PDF] la symbolique du crane dans arts plastics (peinture,sculture)

[PDF] la symetrie !!;)

[PDF] la symetrie aciale exercice jai mis un lien

[PDF] La symétrie axiale