[PDF] TD3 – Différentiabilité des fonctions de plusieurs variables Exercice





Previous PDF Next PDF



2.4 Différentiabilité en plusieurs variables

x0. Pour une fonction d'une variable cette approximation linéaire est la droite tangente. Pour fonctions de deux variables



TD3 – Différentiabilité des fonctions de plusieurs variables Exercice

TD3 – Différentiabilité des fonctions de plusieurs variables. Exercice 1. Montrer d'après la definition que la fonction : f(x y) = x2 + y2.



Fonctions de plusieurs variables

1 nov. 2004 1.2 Différentiabilité d'une fonction de deux variables. Définition 1.2 Soit f une fonction de deux variables définie au voisinage de (0



Chapitre 1 - Fonctions de plusieurs variables. Limites dans R

Le fait que ? est partout différentiable sera une conséquence du théorème 3.21. Exercice 5. Écrire la matrice jacobienne de l'application (x y



Dérivées des fonctions de plusieurs variables (suite) 1 La

Si F a des composantes de classe C1 alors elles sont différentiables et F est également différentiable. Exercice. (i) Trouver la matrice jacobienne de F en (1 



Théorie des Nombres et Applications

La différentiabilité généralise aux fonctions de plusieurs variables la notion une fonction de deux variables et (x0y0) ? D(f) un point de reference.



Cours dAnalyse 3 Fonctions de plusieurs variables

Proposition 3.11 (DERIVEES PARTIELLES ET DIFFERENTIABILITE). 49. Page 50. 3.5 Opérations sur les fonctions différentiables. Calcul différentiel. Preuve : Pas 



Approximation et interpolation des fonctions différentiables de

Approximation et interpolation des fonctions différentiables de plusieurs variables. Annales scientifiques de l'É.N.S. 3e série tome 83



Différentiabilité ; Fonctions de plusieurs variables réelles

Toutes les normes de Rn sont équivalentes. 1 Fonctions de plusieurs variables réelles. Fonction f : U ? Rn ?? Rp (U est ouvert de Rn) 



Chapitre 3 - Dérivées partielles différentielle

http://www.math.univ-toulouse.fr/~jroyer/TD/2013-14-L2PS/L2PS-Ch3.pdf



Fonctions de plusieurs variables - Université Paris-Saclay

1 2 Di?´erentiabilit´e d’une fonction de deux variables D´e?nition 1 2 Soit f une fonction de deux variables d´e?nie au voisinage de (00) On dit que f est di?´erentiable en (00) si elle admet un d´eveloppement limit´e a l’ordre 1 i e si on peut ´ecrire f(xy) = c+ax+by + p x2 +y2 (xy)



Fonction de deux variables

3 1 Fonctions implicites dans le cas de deux variables Tout d'abord expliquons ce qu'est une fonction implicite Lorsqu'on étudie une fonction x ? y = f(x) y est explicitement fonction de x c'est à dire que connaissant les différentes valeurs de x on peut calculer directement y



Fonctions de deux variables - unicefr

Pour une fonction de deux variables il y a deux d´eriv´ees une ”par rapport `a x” et l’autre ”par rapport `a y” Les formules sont (`a gauche la premi`ere `a droite la seconde) : (ab) 7?(x 7?f(xb))0(a) (ab) 7?(x 7?f(ax))0(b) La premi`ere est not´ee f0 x ou parfois ?f ?x et la seconde est not´ee f 0 y ou parfois



TD3–Di?érentiabilitédesfonctionsdeplusieursvariables Exercice1

La fonction est continue dans R2 {(00)} Pour étudier la continuité au point(00) onconsidèrelarestrictiondefàladroitey= x: f(xx) = 1 2x qui ne tend pas vers 0 = f(00) lorsque x?0 Donc la fonction n’est pas continue au point(00) •Dérivabilité Onsedemandesilafonctionadmettouteslesdérivéespartielles Si(xy) 6= (00) : ?f



23 D´erivabilit´e en plusieurs variables

2 3 D´erivabilit´e en plusieurs variables La d´eriv´ee d’une fonction lorsqu’elle existe est li´ee aux variations de la fonction tandis que l’un de ses variables parcourt une direction Pour fonctions d’une variable r´eelle la seule direction possible `a parcourir est l’axe des abscisses For fonctions de plusieurs variables



Searches related to différentiabilité d+une fonction deux variables PDF

1 2 1 fonctions de deux variables On commence par le cas de deux variables qui est plus simple du point de vue des notations : f: (x;y) 2D(f) ˆR2!R une fonction de deux variables et (x 0;y 0) 2D(f) un point de reference D efinition 2 1 On dit que fest di erentiable au point (x 0;y 0) si il existe deux nombres r eels a 1;a

Comment définir la fonction de deux variables?

La fonctionf: (x;y) !7 p 1 2(x2+y) est dé?nie sur le disque fermé de centre O et de rayon 1. Elle admet pour minimum 0, il est atteint sur le cercle de centre O de rayon 1 et pourtant les dérivées partielles ne s’annulent en aucun point du cercle. 25 M. Pelini, V. Ledda Fonction de deux variablesAnalyse 2 Exercice 12

Comment calculer la différentiabilité d’une fonction?

La di?érentiabilité d’une fonction f au point x 0correspond à l’exis- tence d’une approximation linéaire de la fonction f au voisinage du point x 0. Pour une fonction d’une variable, cette approximation linéaire est la droite tangente. Pour fonctions de deux variables, elle sera le plan tan- gent au graphe de la fonction au point (x 0,y 0).

Qu'est-ce que la différentiabilité en plusieurs variables?

2.4 Di?érentiabilité en plusieurs variables La di?érentiabilité d’une fonction f au point x 0correspond à l’exis- tence d’une approximation linéaire de la fonction f au voisinage du point x

Comment calculer la fonction d'une variable?

1.la variable x en fonction de y : on obtient x = h(y) 2.ou la variable y en fonction de x : on obtient y = h(x). Dans les deux cas, h est une fonction de une variable.

Polytech" Paris - UPMC Agral 3, 2016 - 2017

TD3 - Différentiabilité des fonctions de plusieurs variables Exercice 1.Montrer d"après la definition que la fonction : f(x,y) =x2+y2 est différentiable dansR2. Calculer la différentielle. Solution. La fonctionfest différentiable au point(x0,y0)?R2ssi : lim

21+h22= 0.

Dès que :

f(x0+h1,y0+h2) =x20+h21+ 2x0h1+y20+h22+ 2y0h2, ?f(x0,y0) = (2x0,2y0), la limite se réduit à : lim (h1,h2)→(0,0)h

21+h22Èh

21+h22= lim(h1,h2)→(0,0)Èh

21+h22= 0.

Cela suffit pour prouver quefest différentiable dansR2.

Exercice 2.Soitf:R2?→Rdéfinie par :

f(x,y) =xexy. Est-elle différentiable au point(1,0)? Si oui, linéariserfau voisinage de(1,0)et approcher la valeurf(1.1,-0.1). Solution. La fonctionfest dérivable dansR2car composition de fonctions dérivables. Les dérivées partielles : ?f(x,y) = (∂xf(x,y),∂yf(x,y)) = (exy+xyexy,x2exy) sont elles-mêmes dérivables dansR2car composition de fonctions dérivables. La fonctionfest de classeC1surR2et donc elle est différentiable dansR2. En particulier elle est différentiable

au point(1,0). Dès que la fonction est différentiable, elle admet une linéarisation au voisinage

de(1,0): f(x,y) =f(1,0) + (x-1)∂xf(1,0) +y∂yf(1,0) +o(È(x-1)2+y2), f(x,y) = 1 + (x-1) +y+o(È(x-1)2+y2) =x+y+o(È(x-1)2+y2). Cette linéarisation est valide localement, au voisinage du point(1,0), et pas dans toutR2! Pour approcher la valuerf(1.1,-0.1)on calcule : f(1.1,-0.1)≈1.1-0.1≈1 e on sait que l"erreur d"approximation est un petit o de

È(x-1)2+y2. Plusx,ysont proches

(en terms de distance! ) du point(1,0)plus l"approximation est précise. Calculer avec une calculatrice la valeur exacte def(1.1,-0.1). 1

Exercice 3.Soitf:R2?→Rdéfinie par :

f(x,y) =x3-y3.

Dire si le graphe def:

G f={(x,y,z)?R3t.q.z=f(x,y)} admet un plan tangent au point(0,1,-1)et, le cas échant, donner l"équation du plan. Solution. Dire que le grapheGfadmet un plan tangent au point(0,1,-1)est équivalent à dire quefest différentiable au point(0,1). Clairement la fonctionfest de classeC1dansR2et donc différentiable dansR2. L"èquation du plan tangent est : t(x,y) =f(0,1) +∂xf(0,1)x+∂yf(0,1)(y-1) =-1-3(y-1) = 2-3y

Exercice 4.Soitf:R2?→Rdéfinie par :

f(x,y) =( x2y3x

2+y2si(x,y)?= (0,0)

0sinon

- Est-elle continue dansR2? - Est-elle dérivable dansR2? - Est-elle de classeC1dansR2? - Est-elle différentiable dansR2?

Solution.

•Continuité. La fonction est continue dansR2\ {(0,0)}. Pour étudier la continuité au point(0,0)on utilise les cordonnées polaires de centre(0,0): x=rcosθ y=rsinθ avecr >0etθ?[0,2π[. On veut montrer que : lim r→0f(rcosθ,rsinθ) = 0 et que cette limite ne dépend pas de l"angleθ. En pratique il faut trouver une fonction g(r)de la seule variablertelle que etg(r)→0sir→0. Rappel : ne pas mettre la valuer absolue dans la majoration conduit

à des résultats faux.

f(rcosθ,rsinθ) =r2cos2θr3sin3θr

2(cos2θ+ sin2θ)=r3cos2θsin3θ

etr3→0sir→0. Donc lim (x,y)→(0,0)f(x,y) = 0 =f(0,0).

Cela prouve que la fonction est continue dansR2.

2 •Dérivabilité. On se demande si la fonctionfest dérivable. Si(x,y)?= (0,0): ∂f∂x (x,y) =2xy5(x2+y2)2 ∂f∂y (x,y) =x2y2(3x2+y2)(x2+y2)2 Si(x,y) = (0,0)on est obligé de passer par la définition de dérivée partielle. ∂f∂x (0,0) = limh→0f(h,0)-f(0,0)h = limh→00-0h = 0 ∂f∂y (0,0) = limh→0f(0,h)-f(0,0)h = limh→00-0h = 0 Cela prouve quefest dérivable au point(0,0)et∂xf(0,0) =∂yf(0,0) = 0. •ClasseC1. On se demande si les dérivées partielles def: xf(x,y) =(

2xy5(x2+y2)2si(x,y)?= (0,0)

0sinon

yf(x,y) =( x2y2(3x2+y2)(x2+y2)2si(x,y)?= (0,0)

0sinon

sont fonctions continues dansR2. Elles sont continues dansR2\ {(0,0)}. Pour étudier la continuité au point(0,0)on calcule les limites : lim (x,y)→(0,0)∂xf(x,y) lim(x,y)→(0,0)∂yf(x,y) à l"aide des cordonnées polaires de centre(0,0). xf(rcosθ,rsinθ) =2rcosθr5sin5θr

4(cos2θ+ sin2θ)2= 2r2cosθsin5θ.

et2r2→0sir→0. Donc lim (x,y)→(0,0)∂xf(x,y) = 0 =∂xf(0,0).

Même chose pour∂yf:

yf(rcosθ,rsinθ) =r2cos2θr2sin2θ(3r2cos2θ+r2sin2θ)r

4(cos2θ+ sin2θ)2= cos2θsin2θ(3r2cos2θ+r2sinθ)

et4r2→0sir→0. Donc lim (x,y)→(0,0)∂yf(x,y) = 0 =∂yf(0,0).

Cela prouve quef?C1(R2).

3 •Différentiabilité. La fonction est de classeC1donc elle est différentiable dansR2.

Exercice 5.Soitf:R2?→Rdéfinie par :

f(x,y) =¨ yx

2+y2si(x,y)?= (0,0)

0sinon

- Est-elle continue dansR2? - Est-elle dérivable dansR2? - Est-elle différentiable dansR2?

Solution.

•Continuité. La fonction est continue dansR2\ {(0,0)}. Pour étudier la continuité au point(0,0)on considère la restriction defà la droitey=x: f(x,x) =12x qui ne tend pas vers0 =f(0,0)lorsquex→0. Donc la fonction n"est pas continue au point(0,0).

•Dérivabilité. On se demande si la fonction admet toutes les dérivées partielles. Si(x,y)?=

(0,0): ∂f∂x (x,y) =-2xy(x2+y2)2 ∂f∂y (x,y) =x2-y2(x2+y2)2

Doncfest dérivable dansR2\ {(0,0)}.

Si(x,y) = (0,0)on est obligé de passer par la définition de dérivée partielle. ∂f∂x (0,0) = limh→0f(h,0)-f(0,0)h = limh→00-0h = 0 lim h→0f(0,h)-f(0,0)h

La dérivée partielle par rapport àxexiste dansR2et la dérivée partielle par rapport ày

existe dansR2\ {(0,0)}. Doncfest dérivable dansR2\ {(0,0)}.

•Différentiabilité. La fonction est de classeC1dansR2\{(0,0)}car les dérivées partielles

sont quotient de fonctions continues. Donc elle est différentiable dansR2\ {(0,0)}. Elle ne peut pas être différentiable au point(0,0)car pas continue. Exercice 6.Une étude des glaciers a montré que la températureTà l"instantt(mesuré en jours) et à la profondeurx(mesuré en pieds) peut être modélisé par

T(x,t) =T0+T1e-λxsin(ωt-λx),

ouω=2π365 etλ >0etT1?= 0. a) Calculer∂xTet∂tT. b) Montrer queTvérifie l"équation de la chaleur∂tT=k∂xxTpour un certaink?R. Solution. Dès queλ,ω,T1,T0sont constantes on a : a) xT=-λT1e-λx€sin(ωt-λx) + cos(ωt-λx)Š tT=ωT1e-λxcos(ωt-λx) 4 b) xxT=∂2T∂

2x= 2λ2T1e-λxcos(ωt-λx)

xxT∂ tT=2λ2T1e-λxcos(ωt-λx)ωT

1e-λxcos(ωt-λx)=2λ2ω

Donc la fonctionTvérifie l"equation de la chaleur aveck=ω2λ2. Exercice 7.Soitf:R3?→Rla fonction définie par : f(x,y,z) =x3y+x2-y2-x4+z5.

Après vérification de la validité du théorème de Schwarz, calculer la matrice hessienne def.

Solution. La fonction admet 3 dérivées d"ordre1par rapport à ses 3 variables : ?f(x,y,z) = (∂xf(x,y,z),∂yf(x,y,z),∂zf(x,y,z)) = (3x2y+ 2x-4x3,x3-2y,5z4)

La fonction admet9 = 32dérivées d"ordre2:

2f∂

2x= 6xy+ 2-12x2

2f∂

2y=-2

2f∂

2z= 20z3

2f∂x∂y

= 3x2

2f∂x∂z

= 0

2f∂y∂x

= 3x2

2f∂y∂z

= 0

2f∂z∂x

= 0

2f∂z∂y

= 0

Toutes les dérivées croisées sont égales. En fait le théorème de Schwarz dit que sifest de classe

C

2dansR3alors la dérivation à l"ordre2ne depend pas de l"ordre dans lequel elle se fait.

Sous les hypothèses du théorème de Schwartz la matrice hessienne est symétrique carHi,jf=

xi,xjf=∂xj,xif=Hj,if. H f(x,y,z) =† ∂2f∂x

2∂2f∂x∂y

∂2f∂x∂z ∂2f∂y∂x ∂2f∂y

2∂2f∂y∂z

∂2f∂z∂x ∂2f∂z∂y ∂2f∂z 2 (0) H f(x,y,z) =...

6xy+ 2-12x23x20

3x2-2 0

Exercice 8.Soitf:R2?→Rla fonction définie par : f(x,y) = sinxsiny 5 Ecrire le polynôme de Taylor d"ordre2defau voisinage du point(0,0). Solution. La fonctionfest de classeC2au voisinage de(0,0)et son développement de Taylor d"ordre2est donné par : f(x,y) =f(0,0) +?f(0,0)·(x,y) +12 (x,y)THf(0,0)(x,y) +o(x2+y2)

Dès que :

?f(x,y) = (cosxsiny,sinxcosy) et?f(0,0) = (0,0), la partie d"ordre1du développement est nulle. H f(x,y) =‚-sinxsinycosxcosy cosxcosy-sinxsinyŒ

La partie d"ordre 2 est donnée par :

(x,y)THf(0,0)(x,y) = (x,y)T‚0 1

1 0Œ

(x,y) = (x,y)T(yx) = 2xy

Donc :

f(x,y) =xy+o(x2+y2). 6quotesdbs_dbs35.pdfusesText_40
[PDF] limite d'une fonction ? deux variables

[PDF] dérivée d'une fonction ? plusieurs variables

[PDF] fonctions ? plusieurs variables exercices corrigés

[PDF] faire une étude de marché gratuite

[PDF] exemple d'étude de marché pdf

[PDF] faire une étude de marché pour créer son entreprise

[PDF] étude de marché gratuite en ligne

[PDF] etude de marché d'un projet exemple

[PDF] importance de la fonction achat dans l'entreprise

[PDF] historique de la fonction achat

[PDF] le processus d'achat pdf

[PDF] le processus achat

[PDF] installation sanitaire

[PDF] support d'installation windows 10

[PDF] cd d'installation windows 7 gratuit