[PDF] Chapitre 1 - Fonctions de plusieurs variables. Limites dans R





Previous PDF Next PDF



2.4 Différentiabilité en plusieurs variables

x0. Pour une fonction d'une variable cette approximation linéaire est la droite tangente. Pour fonctions de deux variables



TD3 – Différentiabilité des fonctions de plusieurs variables Exercice

TD3 – Différentiabilité des fonctions de plusieurs variables. Exercice 1. Montrer d'après la definition que la fonction : f(x y) = x2 + y2.



Fonctions de plusieurs variables

1 nov. 2004 1.2 Différentiabilité d'une fonction de deux variables. Définition 1.2 Soit f une fonction de deux variables définie au voisinage de (0



Chapitre 1 - Fonctions de plusieurs variables. Limites dans R

Le fait que ? est partout différentiable sera une conséquence du théorème 3.21. Exercice 5. Écrire la matrice jacobienne de l'application (x y



Dérivées des fonctions de plusieurs variables (suite) 1 La

Si F a des composantes de classe C1 alors elles sont différentiables et F est également différentiable. Exercice. (i) Trouver la matrice jacobienne de F en (1 



Théorie des Nombres et Applications

La différentiabilité généralise aux fonctions de plusieurs variables la notion une fonction de deux variables et (x0y0) ? D(f) un point de reference.



Cours dAnalyse 3 Fonctions de plusieurs variables

Proposition 3.11 (DERIVEES PARTIELLES ET DIFFERENTIABILITE). 49. Page 50. 3.5 Opérations sur les fonctions différentiables. Calcul différentiel. Preuve : Pas 



Approximation et interpolation des fonctions différentiables de

Approximation et interpolation des fonctions différentiables de plusieurs variables. Annales scientifiques de l'É.N.S. 3e série tome 83



Différentiabilité ; Fonctions de plusieurs variables réelles

Toutes les normes de Rn sont équivalentes. 1 Fonctions de plusieurs variables réelles. Fonction f : U ? Rn ?? Rp (U est ouvert de Rn) 



Chapitre 3 - Dérivées partielles différentielle

http://www.math.univ-toulouse.fr/~jroyer/TD/2013-14-L2PS/L2PS-Ch3.pdf



Fonctions de plusieurs variables - Université Paris-Saclay

1 2 Di?´erentiabilit´e d’une fonction de deux variables D´e?nition 1 2 Soit f une fonction de deux variables d´e?nie au voisinage de (00) On dit que f est di?´erentiable en (00) si elle admet un d´eveloppement limit´e a l’ordre 1 i e si on peut ´ecrire f(xy) = c+ax+by + p x2 +y2 (xy)



Fonction de deux variables

3 1 Fonctions implicites dans le cas de deux variables Tout d'abord expliquons ce qu'est une fonction implicite Lorsqu'on étudie une fonction x ? y = f(x) y est explicitement fonction de x c'est à dire que connaissant les différentes valeurs de x on peut calculer directement y



Fonctions de deux variables - unicefr

Pour une fonction de deux variables il y a deux d´eriv´ees une ”par rapport `a x” et l’autre ”par rapport `a y” Les formules sont (`a gauche la premi`ere `a droite la seconde) : (ab) 7?(x 7?f(xb))0(a) (ab) 7?(x 7?f(ax))0(b) La premi`ere est not´ee f0 x ou parfois ?f ?x et la seconde est not´ee f 0 y ou parfois



TD3–Di?érentiabilitédesfonctionsdeplusieursvariables Exercice1

La fonction est continue dans R2 {(00)} Pour étudier la continuité au point(00) onconsidèrelarestrictiondefàladroitey= x: f(xx) = 1 2x qui ne tend pas vers 0 = f(00) lorsque x?0 Donc la fonction n’est pas continue au point(00) •Dérivabilité Onsedemandesilafonctionadmettouteslesdérivéespartielles Si(xy) 6= (00) : ?f



23 D´erivabilit´e en plusieurs variables

2 3 D´erivabilit´e en plusieurs variables La d´eriv´ee d’une fonction lorsqu’elle existe est li´ee aux variations de la fonction tandis que l’un de ses variables parcourt une direction Pour fonctions d’une variable r´eelle la seule direction possible `a parcourir est l’axe des abscisses For fonctions de plusieurs variables



Searches related to différentiabilité d+une fonction deux variables PDF

1 2 1 fonctions de deux variables On commence par le cas de deux variables qui est plus simple du point de vue des notations : f: (x;y) 2D(f) ˆR2!R une fonction de deux variables et (x 0;y 0) 2D(f) un point de reference D efinition 2 1 On dit que fest di erentiable au point (x 0;y 0) si il existe deux nombres r eels a 1;a

Comment définir la fonction de deux variables?

La fonctionf: (x;y) !7 p 1 2(x2+y) est dé?nie sur le disque fermé de centre O et de rayon 1. Elle admet pour minimum 0, il est atteint sur le cercle de centre O de rayon 1 et pourtant les dérivées partielles ne s’annulent en aucun point du cercle. 25 M. Pelini, V. Ledda Fonction de deux variablesAnalyse 2 Exercice 12

Comment calculer la différentiabilité d’une fonction?

La di?érentiabilité d’une fonction f au point x 0correspond à l’exis- tence d’une approximation linéaire de la fonction f au voisinage du point x 0. Pour une fonction d’une variable, cette approximation linéaire est la droite tangente. Pour fonctions de deux variables, elle sera le plan tan- gent au graphe de la fonction au point (x 0,y 0).

Qu'est-ce que la différentiabilité en plusieurs variables?

2.4 Di?érentiabilité en plusieurs variables La di?érentiabilité d’une fonction f au point x 0correspond à l’exis- tence d’une approximation linéaire de la fonction f au voisinage du point x

Comment calculer la fonction d'une variable?

1.la variable x en fonction de y : on obtient x = h(y) 2.ou la variable y en fonction de x : on obtient y = h(x). Dans les deux cas, h est une fonction de une variable.

Chapitre 1

Fonctions de plusieurs variables.

Limites dansRn.

Le but principal de ce cours est d"étudier les fonctions de plusieurs variables. En première

année vous avez vu les fonctions d"une seule variable, où un paramètre réel (qui physique-

ment peut représenter une température, une pression, une densité massique, volumique, etc.) dépend d"un autre paramètre, également réel (le temps, une abscisse, etc).

Ici on va donc s"intéresser à des fonctions de plusieurs paramètres réels. Par exemple on

peut vouloir étudier la température, la pression ou la densité volumique en fonction de la position dans l"espace (3 dimensions), de la position et de la vitesse (par exemple quelle est la densité de particules qui se trouve à cet endroit et qui va dans cette direction, ce qui fait 6 dimensions), on peut s"intéresser en plus à la dépendance par rapport au temps (une

dimension supplémentaire). La quantité étudiée peut dépendre de la position deNobjets,

auquel cas on doit travailler avec3Ndimensions. Bref, les exemples ne manquent pas... Notre exemple favori dans ce cours sera celui d"une altitude dépendant de deux para- mètres (latitude et longitude ou, de façon plus abstraite,xety). Il s"agit donc d"une fonction sur un domaine deR2et à valeurs dansR. L"intérêt est que le graphe de cette fonction correspond exactement à la montagne que l"on est en train d"escalader. Mathématiquement, on devra donc étudier des fonctions qui ne sont plus définies sur un intervalle (ou une partie quelconque) deR, mais sur un domaine deRnpour un certain n2N. L"espace d"arrivée pourra êtreRou bienRppour un certainp2N, si la quantité qui nous intéresse est elle-même multi-dimensionnelle. On verra que le fait d"avoir plusieurs

dimensions à l"arrivée n"est pas très génant, alors que le fait d"avoir plusieurs dimensions au

départ va poser un certain nombre de difficultés par rapport à ce que vous connaissez.

Les principales propriétés des fonctions de plusieurs variables auxquelles on va s"intéresser

sont les questions de régularité (continuité, dérivabilité, ...) et leurs conséquences (compor-

tement local d"une fonction, étude des extrema, ...), d"intégration, et enfin le lien entre les

deux.

1.1 Fonctions de plusieurs variables

On considère une partieDdeRn, ainsi qu"une fonctionfdeDdansRp. A tout point x= (x1;:::;xn)2 D 1 Fonctions de plusieurs variables. Limites dansRn.-20 -20 -20 -20 -15 -15 -15 -15 -10 -10 -10 -10 -10 -10 -10 -10 -5 -5 -5 -5 -5 -5 -5 -5 0 0 00 0 0 000 0 00 0 0 00 5 555
5 5 5 5 10 10 10 10 15 15 20 20 -5-4-3-2-1012345 -5 -4 -3 -2 -1 0 1 2 3 4 5 Figure1.2 - Lignes de niveau pour l"application(x;y)7!x2cos(y)et carte IGN avec lignes de niveau pour l"altitude.

1.2 Normes

Notre objectif est maintenant d"étudier la régularité des fonctions de plusieurs variables.

La notion de limite, sur laquelle reposent en particulier les notions de continuité et de dériva-

bilité, s"appuie elle-même sur la notion de proximité entre deux points. Pour une fonctionf deRdansR, on dit quef(x)tend versl2Rquandxtend versa2Rsif(x)est " proche » deldès lors quexest " assez proche » dea. Intuitivement, deux réelsxetysont proches si la valeur absolue (quantité positive)jxyjest petite, en un sens à préciser. Avant de parler de limite pour des fonctions définies surRn, il faut donc donner un sens précis à l"assertion "xest proche dey» lorsquexetysont des points deRn. En fait, on sait déjà mesurer la distance entre deux points deRn. Par exemple pour deux pointsx= (x1;x2)ety= (y1;y2)dansR2, la longueur du segment[x;y]est donnée par d(x;y) =p(x1y1)2+ (x2y2)2: Cette quantité sera appelée distance euclidienne entrexety. Mais ce n"est pas toujours la bonne façon de mesurer la distance entre deux points, comme le montrent les exemples suivants. Considérons un piéton dans une ville organisée par blocs (voir figure 1.3 ), chaque

bloc faisant 500m de côté. Il devra parcourirm pour aller du pointAau pointBetm pour aller du pointAau pointC, alors que les distances euclidiennes (à vol d"oi-

seau) entreAetBet entreAetCsont respectivement dem etm. Marseille Figure1.3 - Les villes américaines et les déplacements en normel1.

est plus proche de Paris que de Toulouse si on regarde le temps de parcours par le train,Année 2013-2014 3

L2 Parcours Spécial -Calcul différentiel et intégralalors que c"est quasiment deux fois plus loin en termes de kilomètres par la route. Ainsi il y

a différentes façons de mesurer la distance entre deux points, et il n"y en a pas de bonnes ou de mauvaises : chacune est plus ou moins bien adaptée à chaque contexte. Définition 1.3.SoitEunR-espace vectoriel. On appelle norme surEune application N:E!R+qui vérifie les propriétés suivantes : (i)8x2E; N(x) = 0()x= 0(séparation), (ii)8x2E;82R; N(x) =jjN(x)(homogénéité), (iii)8(x;y)2E2; N(x+y)6N(x) +N(y)(inégalité triangulaire). Étant donnée une normeNsurE, on appelle distance associée àNl"application d

N:E2!R+

(x;y)7!N(xy) On note que toutes les distances ne sont pas obtenues de cettes façons, mais on ne s"attardera pas sur ces questions dans ce cours (voir tout de même les exercices 14 et 15 , plus de détails seront donnés dans le cours d"approfondissements mathématiques). Exercice1.Montrer que la valeur absolue est une norme surR.

Proposition 1.4.Pourx= (x1;:::;xn)2Rnon note

kxk2=v uutn X j=1jxjj2:

Alors l"applicationx7! kxk2est une norme surRn.

Démonstration.Les propriétés de séparation et d"homogénéité sont faciles et laissées en exer-

cice. Pour montrer l"inégalité triangulaire, on considère deux pointsx= (x1;:::;xn)et y= (y1;:::;yn)deRn. Six+y= 0alors le résultat est clair. Sinon on a d"après l"inégalité de Cauchy-Schwarz kx+yk2 2=nX j=1(xj+yj)2=nX j=1x j(xj+yj) +nX j=1y j(xj+yj) 6 v uutn X j=1x 2jv uutn X j=1(xj+yj)2+v uutn X j=1y 2jv uutn X j=1(xj+yj)2

6(kxk2+kyk2)kx+yk2:

On obtient l"inégalité triangulaire en divisant parkx+yk26= 0.Exercice2.Pourx= (x1;:::;xn)2Rnon note

kxk1=nX j=1jxjjetkxk1= max16j6njxjj: Montrer que les applicationsx7! kxk1etx7! kxk1sont des normes surRn.

1.3 Limites

Maintenant qu"on a introduit les normes, qui jouent dansRnle rôle que joue la valeur absolue dansR, on peut définir la convergence d"une suite exactement de la même façon dans R

nque dansR, en remplaçant simplement la valeur absolue par une norme.4 J. Royer - Université Toulouse 3

Fonctions de plusieurs variables. Limites dansRn.Définition 1.5.SoientEunR-espace vectoriel muni d"une normekk. Soient(xm)m2Nune

suite d"éléments deEetl2E. On dit que la suite(xm)m2Ntend verslet on note x m!m!+1l si

8" >0;9N2N;8m>N;kxmlk6":

Autrement ditxmtend verslsi la quantité réellekxmlktend vers 0 au sens usuel. Sans surprise, on retrouve les même propriétés de base que pour la limite d"une suite réelle : Proposition 1.6.SoientEunR-espace vectoriel muni d"une normekk. (i)Unicité de la limite.Soient(xm)m2N2EN,l12Eetl22E. Sixm!l1etxm!l2 quandmtend vers+1, alorsl1=l2. (ii)Linéarité de la limite.Soient(xm)m2Net(ym)m2Ndeux suites d"éléments deE. Soient l

1;l22E,;2R. Si

x m!m!1l1etym!m!1l2; alors x m+ym!m!1l1+l2: Exercice3.Démontrer la proposition1.6 (la démonstration est la même que p ourles limites dansR). Définition 1.7.SoitEunR-espace vectoriel. SoientN1,N2deux normes surE. On dit que N

1etN2sont équivalentes s"il existe une constanteC>0telle que pour toutx2Eon a

N

1(x)6CN2(x)etN2(x)6CN1(x):

L"intérêt de cette nouvelle définition est illustré par l"exercice 4 . La difficulté avec la définition 1.5 est qu"elle dép enda priori de la norme don tl"espace Eest muni. Ainsi, une suite peut converger vers une certaine limite pour une norme, ne pas être convergente pour une autre norme, ou encore converger vers une limite différente pour une troisième norme.

Ce n"est pas très agréable.

Lorsque deux normes sont équivalentes, il est facile de voir qu"une suite converge vers une certaine limite pour l"une des deux normes si et seulement c"est aussi le cas pour l"autre.

C"est bien mieux.

Exercice4.1.Montrer que les trois normesx7! kxk1,x7! kxk2etx7! kxk1surRnsont deux à deux équivalentes.

2.Soit(xm)m2Nune suite de points deRnetl2Rn. Montrer que

kxmlk1!m!10() kxmlk2!m!10() kxmlk1!m!10: La vraie bonne nouvelle est qu"en dimension finie toutes les normes sont équivalentes. Comme on travaillera en dimension finie dans tout ce cours, cela signifie qu"on pourra parler de limite sans préciser la norme avec laquelle on travaille. Dans la suite, lorsqu"on parlera d"une norme surRn, on ne précisera donc la norme utilisée que quand ce sera nécessaire. Sinon cela signifiera que le résultat énoncé ne dépend pas du choix de la norme.quotesdbs_dbs35.pdfusesText_40
[PDF] limite d'une fonction ? deux variables

[PDF] dérivée d'une fonction ? plusieurs variables

[PDF] fonctions ? plusieurs variables exercices corrigés

[PDF] faire une étude de marché gratuite

[PDF] exemple d'étude de marché pdf

[PDF] faire une étude de marché pour créer son entreprise

[PDF] étude de marché gratuite en ligne

[PDF] etude de marché d'un projet exemple

[PDF] importance de la fonction achat dans l'entreprise

[PDF] historique de la fonction achat

[PDF] le processus d'achat pdf

[PDF] le processus achat

[PDF] installation sanitaire

[PDF] support d'installation windows 10

[PDF] cd d'installation windows 7 gratuit