[PDF] [PDF] Fonctions de deux variables





Previous PDF Next PDF



Fonction carré et fonctions associées

appelle la courbe une parabole d'équation y = x². 2- Parité. La représentation graphique de la fonction carré possède un axe de symétrie qui est l'axe des 



I. Sens de variation dune fonction ; extréma

2) Cas d'une fonction dérivable ou monotone sur un intervalle I de IR : a) Observation des fonctions de référence : x ? x². Tableau de variation :.



Seconde Cours – fonction carrée et fonctions de degré 2

Propriété : Dans un repère la courbe représentative de la fonction carré est située au dessus de l'axe des abscisses. En effet



FICHE METHODE sur les FONCTION CARREE I) A quoi sert la

R(x) = x(100 –x) = 100x – x² . b) Remarques : Le monde est en perpétuelle évolution et les fonctions numériques servent à rendre compte de ces évolutions.



Dérivation

Soit f la fonction définie par f(x) = x² – 2. Cette fonction est dérivable en 2 et f '(2) = 4. L'équation de la tangente en 2 est y = f '(2)(x – 2) + f(2).



CHAPITRE 7 – Fonction carré et fonction inverse

Cours de Mathématiques – Classe de Seconde - CHAPITRE 7 – Fonction carré et fonction inverse A) La fonction "carré" : f(x) = x².



FONCTION LOGARITHME

Etudier la limite en +? de chacune des fonctions suivantes. a) Pour tout réel x > 3 f(x) = ln(x² – 3x + 1). b) Pour 





FONCTIONS DE REFERENCE

Démontrer que la fonction f définie sur R par f (x) = x2 ? 8x + 3 est strictement croissante sur l'intervalle 4;+????? . Soit a et b deux nombres réels 



Correction (très rapide) des exercices de révision

f(x)=x² f(x)=1/x. 2. Donne sans aucun calcul et sans utiliser la calculatrice



[PDF] FONCTIONS DE REFERENCE - maths et tiques

Définition : La fonction carré est la fonction f définie sur R par f (x) = x2 Propriété : La fonction carré est strictement décroissante sur l'intervalle 



[PDF] LES FONCTIONS DE REFERENCE - maths et tiques

On considère la fonction f définie par f(x) = x2 1) Compléter le tableau de valeurs suivant : x -3 -2 -1 0



[PDF] Fonctions de deux variables

a) Le graphe de (xy) ?? x + y + 1 est le plan passant par (001) (102) et (012) b) Le graphe de (xy) ?? ?1 ? x2 ? y2 est ”l'hémisph`ere nord”



[PDF] FORMULAIRE dINTÉGRATION Dans ce qui suit c est une

FORMULAIRE d'INTÉGRATION Dans ce qui suit "c" est une constante réelle PRIMITIVES connues en terminale ? a dx = ax + c ? x dx = x2 2 + c ? xm dx =



[PDF] m2_livre2017-completpdf - Institut de Mathématiques de Toulouse

Dans ce module il est question de fonctions de plusieurs variables et d'équations différentielles Certains passages de ce cours comportent des trous ils sont 



[PDF] Chapitre 1 - Fonctions de plusieurs variables Limites dans R

Exercice 6 Déterminer et représenter le domaine de définition maximal des fonctions de deux variables suivantes : f1 : (x y) ?? ??y + x2



[PDF] Intégrales de fonctions de plusieurs variables - Mathématiques

Pour calculer cette intégrale il suffit de trouver une primitive de f c'est-`a-dire une fonction F dont la dérivée est égale `a f ; on a alors ?



[PDF] Feuille 9 Limites et continuité des fonctions

Feuille 9 Limites et continuité des fonctions Exercice 1 Calculer les limites suivantes : a) lim x!+1 2x + 5 3x 4 b) lim x!2 x2



[PDF] GENERALITES SUR LES FONCTIONS

f est une fonction définie sur un intervalle I Dire que f est croissante sur I signifie que pour tous réels x1 et x2 de I si x1 ? x2 alors f(x1) ? 

  • Comment calculer la fonction carré ?

    La fonction carré est la fonction f définie sur ? qui, à tout réel x, associe son carré x2, soit f(x) = x2.
  • Comment Etudier une fonction à plusieurs variables ?

    Ainsi, pour une fonction de deux variables (x, y) ?? f(x, y) : — le graphe de f est un sous-ensemble de l'espace R3 muni des coordonnées (x, y, z); — l'ensemble de définition de f est un sous-ensemble du plan horizontal muni des coor- données (x, y); — le dessin des lignes de niveau de f se situe lui-aussi dans le plan
  • Comment déterminer le domaine de définition d'une fonction à plusieurs variables ?

    Si f est une fonction (à 2 ou 3 variables), l'ensemble des valeurs en lesquelles on peut évaluer f est le domaine de définition de f . On note D(f ). f : R×R ? R (x,y) ? 1 x ? y . D(f ) = {(x,y) ? R×R: x = y}.
  • 0 a > , alors f est croissante sur ?. 0 a < , alors f est décroissante sur ?. 0 a = , alors f est constante sur ?.

Fonctions de deux variables

D´edou

Mai 2011

D"une `a deux variables

Les fonctions mod`elisent de l"information d´ependant d"un param`etre. On a aussi besoin de mod´eliser de l"information d´ependant de plusieurs param`etres, et c"est ce que font les fonctions de plusieurs variables. Ce qu"on sait faire pour les fonctions d"une variable s"´etend dans une certaine mesure aux fonctions de plusieurs variables comme on va le voir.

Exemple de fonctions de deux variables

Comme les fonctions d"une variable, celles de deux variables s"´ecrivent avec "?→". En voici une :d:= (x,y)?→ |x-y|. Je l"appelledparce que d(x,y) est la distance entrexety. En voici une autre :p:= (R,R?)?→RR?R+R?. C"est la fonction qui donne la r´esistance d"un montage en parall`ele de deux r´esistances. C"est pour ¸ca que j"ai appel´e les variablesRetR?, mais j"aurais aussi bien pu ´ecrire la mˆeme fonction (x,y)?→xyx+y.Exo 1 Donnez votre exemple favori de fonction de deux variables.

Domaine de d´efinition

Certaines fonctions sont d´efinies pour toutes les valeurs des (deux) variables mais d"autres non. On va dire que les fonctions de deux variables sont les applications deR2dansR?, ce qui permet de d´efinir le domaine de d´efinition par la formule :

DDf:={(x,y)?R2|f(x,y)?=?}.Exemple

Posonsf:= (x,y)?→ln(x-y2)-2?y-x2.

C"est une partie du plan et ¸ca se dessine.Exo 2

Dessinez le domaine de d´efinition de

f:= (x,y)?→xln(x+y)-y⎷y-x.

Graphe

Le grapheGrfd"une fonctionfde deux variables, c"est une partie deR3, `a savoir :

Grf:={(x,y,z)?R3|z=f(x,y)}.Exemple

a) Le graphe de (x,y)?→x+y+ 1 est le plan passant par (0,0,1),(1,0,2) et (0,1,2). b) Le graphe de (x,y)?→?1-x2-y2est "l"h´emisph`ere nord" de la sph`ere unit´e.Ca se dessine ou se visualise.

D´eriv´ees partielles

Pour une fonction de deux variables, il y a deux d´eriv´ees, une "par rapport `ax" et l"autre "par rapport `ay". Les formules sont (`a gauche la premi`ere, `a droite la seconde) : (a,b)?→(x?→f(x,b))?(a) (a,b)?→(x?→f(a,x))?(b). La premi`ere est not´eef?xou parfois∂f∂xet la seconde est not´eef?y ou parfois ∂f∂y. On a donc f ?x(a,b) = (x?→f(x,b))?(a)f?y(a,b) = (x?→f(a,x))?(b).

Calcul de la premi`ere d´eriv´ee partielle

Pour calculer la premi`ere d´eriv´ee partielle, on consid`ereycomme un param`etre et on d´erive comme d"habitude.Exemple

Posonsf:= (x,y)?→xy+y2+ cosxy.On a

f ?x(x,y) =y-ysinxy.Exo 3

Calculezf?x(x,y) pourf:= (x,y)?→xy2-y+exy.

Calcul de la seconde d´eriv´ee partielle

Pour calculer la seconde d´eriv´ee partielle, on consid`erexcomme un param`etre et on d´erive "eny".Exemple

Posonsf:= (x,y)?→xy+y2+ cosxy.On a

f ?y(x,y) =x+ 2y-xsinxy.Exo 4

Calculezf?y(x,y) pourf:= (x,y)?→xy2-y+exy.

Le gradient

Si on met les deux d´eriv´ees partielles ensemble, on obtient le gradientdef, qu"on note?f, ce qui se lit aussi "nablaf" :

Posonsf:= (x,y)?→xy+y2.On af?x(x,y) =yet

f ?y(x,y) =x+ 2y. Le gradient defau point (3,10) est donc (10,23).Exo 5 Calculez le gradient def:= (x,y)?→xey-3yx2en (1,1).

Le dessin du gradient

Le gradient?f(M) defau pointMest un ´el´ement deR2qu"on voit comme un vecteur. Et ce vecteur, on est libre de le voir o`u on veut : alors on fait le choix des physiciens qui consiste `a voir l"origine de ce gradient enM. Ainsi, quandMvarie, on a un gradient en chaque point. Les physiciens disent que le gradient d"une fonction est un "champ" de vecteurs.Exemple Pourf:= (x,y)?→x2+ 2y2, on a?f(2,1) = (4,4) et ¸ca se dessine.Exo 6

Pourf:= (x,y)?→xy-y2, dessinez?f(1,1).

Le sens du gradient

A une variable, la d´eriv´ee dit dans quel sens varie la fonction et `a quelle vitesse : plus la d´eriv´ee est grande, plus la fonction augmente ("en premi`ere approximation"). A deux variables, le gradient pointe dans la direction o`u la fonction augmente le plus, et plus il est long, plus la fonction augmente ("en premi`ere approximation").

Points critiques

On a compris qu"une fonction d´erivable d"une variable atteint ses bornes l`a o`u sa d´eriv´ee s"annule (ou au bord de son DD). A deux variables c"est pareil, sauf que la d´eriv´ee est remplac´ee par le gradient.D´efinition Les points critiques d"une fonctionfde deux variables sont les points o`u son gradient s"annule.

Points critiques : exemples

Exemple

Les points critiques def:= (x,y)?→x3-3x+y2sont ceux qui v´erifient les deux ´equations 3x2-3 = 0 et 2y= 0. On trouve deux points critiques : (1,0) et (-1,0).Exo 7 Trouver les points critiques def:= (x,y)?→x2-4x+y3-3y.

Courbes de niveau

Les courbes de niveau d"une fonctionfde deux variables sont les lieux o`ufest constante, il y en a une par valeur prise : Niv c:={M?R2|f(M) =c}.Exemple Pourf:= (x,y)?→x2+y2, etcpositif, la courbe de niveaucest le cercle de rayon⎷ccentr´e en l"origine.

Courbe de niveau par un point

SiAest un point du domaine de d´efinition def, il y passe une courbe de niveau def, celle de niveauf(A). L"´equation de la courbe de niveau defpassant parAest f(M) =f(A).Exemple Pourf:= (x,y)?→x2+y2, etA:= (3,4), l"´equation de la courbe de niveau passant parAestx2+y2= 25 , c"est donc le cercle de rayon 5 centr´e en l"origine.Exo 8 Pour la mˆeme fonction, quelle est la courbe de niveau passant par (1,2)?

Courbe de niveau et gradient

L`a o`u le gradient est non nul, il est perpendiculaire `a la courbe de niveau. Autrement dit, la tangente `a la courbe de niveau est perpendiculaire au gradient. "Pour monter (ou descendre) le plus vite, il faut partir perpendiculairement `a la courbe de niveau".Exemple Pourf:= (x,y)?→x2+y2, etA:= (3,4), la courbe de niveau passant parAest le cercle de rayon 5 centr´e en l"origine. Et on a ?f(3,4) = (6,8), qui est bien proportionnel au rayon.

Plan tangent au graphe

Pour une fonction d´erivablefd"une variable, on se rappelle que l"´equation de la tangente au graphe au point (a,f(a)) est y=f(a) + (x-a)f?(a). Sifest `a deux variables, c"est presque pareil, l"´equation du plan tangent au point (a,b,f(a,b)) est z=f(a,b) + (x-a)f?x(a,b) + (y-b)f?y(a,b).Exemple Pourf:= (x,y)?→x2+y2, etA:= (3,4), l"´equation du plan tangent est z= 25 + 6(x-3) + 8(y-4).

Approximation lin´eaire

Pour une fonction d´erivablefd"une variable, on se rappelle que l"approximation lin´eaire au pointaest la fonction dont le graphe est la tangente, `a savoir : x?→f(a) + (x-a)f?(a). Sifest `a deux variables, c"est presque pareil, l"approximation lin´eaire au point (a,b) est la fonction dont le graphe est le plan tangent, `a savoir : (x,y)?→f(a,b) + (x-a)f?x(a,b) + (y-b)f?y(a,b).Exo 9 Calculez l"approximation lin´eaire def:= (x,y)?→x2+y2en

A:= (3,4).

D´eriv´ees partielles sup´erieures

Pour faire des approximations quadratiques et autres, il faut des d´eriv´ees sup´erieures. Bien entendu, on peut par exemple d´eriver deux fois, et ce de quatre fa¸cons. Ces quatre d´eriv´ees sont not´eesf??x2,f??xy,f??yx,f??y2sauf que les deux du milieu sont toujours ´egales, donc on n"´ecrit jamaisf??yx.Exo 10 Calculezf??xyetf??yxpourf:= (x,y)?→exy+xsiny.

Extrema

Soitfune fonction d´erivable sur un rectangle;alorsfatteint son maximum et son minimum soit sur le bord du

rectangle, soit en des points critiques.Exemple On consid`ere la fonctionf:= (x,y)?→x2+y2-2x-4ysur le On af(x,y) = (x-1)2+ (y-2)2-5. On voit qu"elle atteint son maximum en (3,5) qui est sur le bord du rectangle, et son minimum (-5) en (1,2) qui est un point critique.Exo 11

Trouver le maximum et le minimum de la fonction

f:= (x,y)?→x2+y2-3x-3ysur le rectangle d´efini par les deux

Interm`ede : mauvaise foi

On a dit :

Sifest une fonction d´erivable sur un rectangle, alorsfatteint son maximum et son minimum soit sur le bord du rectangle, soit en des points critiques.Exo 12 Donner une interprˆetation fausse (et de mauvaise foi!) de cet

´enonc´e.

Extrema sur le bord

Soitfune fonction d´erivable sur un rectangle.On trouve les extrema defsur le bord du rectangle en examinant

les quatre cˆot´es, et en gardant le meilleur de ce qu"on trouve.Exemple On consid`ere la fonctionf:= (x,y)?→xy2-xy+x3ysur le Cette fonction est nulle sur deux des quatre cˆot´es du rectangle. Sur le bord d"en haut, on a la fonctionx?→2x+ 2x3qui est croissante et varie de 0 `a 4. Sur le bord de droite, on a la fonction y?→y2qui est croissante et varie de 0 `a 4. Donc, sur le bord le minimum de la fonction est 0 et son maximum est 4.

Extrema tout court : exemple

Exemple

On consid`ere encore la fonctionf:= (x,y)?→xy2-xy+x3ysur Sur le bord le minimum de la fonction est 0 et son maximum est 4. Pour trouver le minimum de cette fonction sur tout le rectangle, on calcule ses points critiques, qui sont d´efinis par y

2-y+ 3x2y= 2xy-x+x3= 0.En dehors des axes, on trouve

y+ 3x2= 1 et 2y+x2= 1 En r´esolvant ce syst`eme, on trouve, dans notre rectangle, le point critique ( 25
,1⎷5 En ce point,fprend la valeur n´egative10⎷5-42125 ⎷5 qui est donc son minimum.

Extrema tout court : exercice

Exo 13

Calculer le maximum et le minimum de

f:= (x,y)?→2xy2-xy+x3ysur le mˆeme rectangle d´efini par lesquotesdbs_dbs16.pdfusesText_22
[PDF] trigonométrie 1ere sti2d cours

[PDF] arctan valeurs particulières

[PDF] production électricité particulier

[PDF] comment protéger le sol

[PDF] fonctions hyperboliques exercices corrigés

[PDF] arctan valeur remarquable

[PDF] fonction circulaire réciproque cours

[PDF] limite de arctan

[PDF] limite arctan en 0

[PDF] le pouvoir du peuple par le peuple pour le peuple

[PDF] fonctions trigonométriques réciproques pdf

[PDF] shlomo sand livres

[PDF] le peuple est il souverain dissertation

[PDF] exercices corrigés fonction arctangente

[PDF] fonction circulatoire définition