[PDF] Dérivation Soit f la fonction dé





Previous PDF Next PDF



Fonction carré et fonctions associées

appelle la courbe une parabole d'équation y = x². 2- Parité. La représentation graphique de la fonction carré possède un axe de symétrie qui est l'axe des 



I. Sens de variation dune fonction ; extréma

2) Cas d'une fonction dérivable ou monotone sur un intervalle I de IR : a) Observation des fonctions de référence : x ? x². Tableau de variation :.



Seconde Cours – fonction carrée et fonctions de degré 2

Propriété : Dans un repère la courbe représentative de la fonction carré est située au dessus de l'axe des abscisses. En effet



FICHE METHODE sur les FONCTION CARREE I) A quoi sert la

R(x) = x(100 –x) = 100x – x² . b) Remarques : Le monde est en perpétuelle évolution et les fonctions numériques servent à rendre compte de ces évolutions.



Dérivation

Soit f la fonction définie par f(x) = x² – 2. Cette fonction est dérivable en 2 et f '(2) = 4. L'équation de la tangente en 2 est y = f '(2)(x – 2) + f(2).



CHAPITRE 7 – Fonction carré et fonction inverse

Cours de Mathématiques – Classe de Seconde - CHAPITRE 7 – Fonction carré et fonction inverse A) La fonction "carré" : f(x) = x².



FONCTION LOGARITHME

Etudier la limite en +? de chacune des fonctions suivantes. a) Pour tout réel x > 3 f(x) = ln(x² – 3x + 1). b) Pour 





FONCTIONS DE REFERENCE

Démontrer que la fonction f définie sur R par f (x) = x2 ? 8x + 3 est strictement croissante sur l'intervalle 4;+????? . Soit a et b deux nombres réels 



Correction (très rapide) des exercices de révision

f(x)=x² f(x)=1/x. 2. Donne sans aucun calcul et sans utiliser la calculatrice



[PDF] FONCTIONS DE REFERENCE - maths et tiques

Définition : La fonction carré est la fonction f définie sur R par f (x) = x2 Propriété : La fonction carré est strictement décroissante sur l'intervalle 



[PDF] LES FONCTIONS DE REFERENCE - maths et tiques

On considère la fonction f définie par f(x) = x2 1) Compléter le tableau de valeurs suivant : x -3 -2 -1 0



[PDF] Fonctions de deux variables

a) Le graphe de (xy) ?? x + y + 1 est le plan passant par (001) (102) et (012) b) Le graphe de (xy) ?? ?1 ? x2 ? y2 est ”l'hémisph`ere nord”



[PDF] FORMULAIRE dINTÉGRATION Dans ce qui suit c est une

FORMULAIRE d'INTÉGRATION Dans ce qui suit "c" est une constante réelle PRIMITIVES connues en terminale ? a dx = ax + c ? x dx = x2 2 + c ? xm dx =



[PDF] m2_livre2017-completpdf - Institut de Mathématiques de Toulouse

Dans ce module il est question de fonctions de plusieurs variables et d'équations différentielles Certains passages de ce cours comportent des trous ils sont 



[PDF] Chapitre 1 - Fonctions de plusieurs variables Limites dans R

Exercice 6 Déterminer et représenter le domaine de définition maximal des fonctions de deux variables suivantes : f1 : (x y) ?? ??y + x2



[PDF] Intégrales de fonctions de plusieurs variables - Mathématiques

Pour calculer cette intégrale il suffit de trouver une primitive de f c'est-`a-dire une fonction F dont la dérivée est égale `a f ; on a alors ?



[PDF] Feuille 9 Limites et continuité des fonctions

Feuille 9 Limites et continuité des fonctions Exercice 1 Calculer les limites suivantes : a) lim x!+1 2x + 5 3x 4 b) lim x!2 x2



[PDF] GENERALITES SUR LES FONCTIONS

f est une fonction définie sur un intervalle I Dire que f est croissante sur I signifie que pour tous réels x1 et x2 de I si x1 ? x2 alors f(x1) ? 

  • Comment calculer la fonction carré ?

    La fonction carré est la fonction f définie sur ? qui, à tout réel x, associe son carré x2, soit f(x) = x2.
  • Comment Etudier une fonction à plusieurs variables ?

    Ainsi, pour une fonction de deux variables (x, y) ?? f(x, y) : — le graphe de f est un sous-ensemble de l'espace R3 muni des coordonnées (x, y, z); — l'ensemble de définition de f est un sous-ensemble du plan horizontal muni des coor- données (x, y); — le dessin des lignes de niveau de f se situe lui-aussi dans le plan
  • Comment déterminer le domaine de définition d'une fonction à plusieurs variables ?

    Si f est une fonction (à 2 ou 3 variables), l'ensemble des valeurs en lesquelles on peut évaluer f est le domaine de définition de f . On note D(f ). f : R×R ? R (x,y) ? 1 x ? y . D(f ) = {(x,y) ? R×R: x = y}.
  • 0 a > , alors f est croissante sur ?. 0 a < , alors f est décroissante sur ?. 0 a = , alors f est constante sur ?.

DérivationA. Nombre dérivé1- Limite finie d'une fonction en 0.Soit f une fonction définie sur D tel que 0 est à l'intérieur de D ou est une borne de D.On dit que f a pour limite le nombre l lorsque x tend vers 0 et on écrit limx0

fx=l si les nombres f(x) peuvent devenir aussi proches de l qu'on le désire pour x suffisamment proche de 0.Exemple : limx0

52x=5 en effet pour que 5 + 2x soit compris entre 5 - e et 5 + e, c'est à dire 5 - e < 5 + 2x < 5 + e, il suffit de choisir x entre - e/2 et e/2.2- Fonction dérivable en un pointSoit f une fonction et a un point de son ensemble de définition.Dire que la fonction f est dérivable en a signifie que la fonction qui à h associe

fah-fa

h admet une limite finie lorsque h tend vers 0.Cette limite est le nombre dérivé de f en a, on la note f '(a).

f'a=limh0 fah-fa hExemple :

Soit f la fonction définie par f(x) = x² - 2. Montrons que f est dérivable en 2 et calculons f'(2).

f2h-f2 h=2h2 -2 -2 h=4hh2 h=4 h et limh0

4h=4.

On en déduit que f est dérivable en 2 et que f '(2) = 4.

3- Interprétation graphique du nombre dérivéSoit f une fonction dérivable en a . On appelle C la représentation graphique de f dans un

repère. La courbe C admet une tangente au point d'abscisse a et f '(a) est le coefficient

directeur de cette tangente.Une équation de la tangente au point d'abscisse a est y = f '(a)(x - a)+ f (a).

Exemple

Soit f la fonction définie par f(x) = x² - 2. Cette fonction est dérivable en 2 et f '(2) = 4. L'équation de la tangente en 2 est y = f '(2)(x - 2) + f(2) soit y = 4(x - 2) + 2 soit y = 4x - 6.

La fonction

x4x-6 est une approximation affine de la fonction

xx2 -2 au voisinage de 2.Pour x proche de 2, 4x - 6 et x² - 2 donnent des résultats très

voisins.KB 1 sur 4 B. Fonctions dérivées des fonctions usuellesSoit f une fonction dérivable sur D.

La fonction qui à x associe f '(x), le nombre dérivé de f en x, est appelée fonction dérivée de f

sur D et on la note f '.

Le tableau suivant donne les fonctions dérivées des fonctions usuelles.Fonction constanteℝk0

Fonction affineℝax+ba

Carréℝx2 2x

Cubeℝx3 3x2

Puissance de xℝxn (n > 0)n xn-1

Fonction inverseℝ+1

x -1 x2Fonction racine carréeℝ+* x1

2xC. Opérations sur les fonctions dérivables1- Somme et produit par un réelSoient u et v deux fonctions dérivables sur D et k un réel.La fonction dérivée de u + v est (u + v)' = u' + v'.La fonction dérivée de ku est (ku)' = ku'.ExempleCalculer la dérivée de la fonction f définie sur ℝ par f (x) = 2x² - 3x + 5.La dérivée de x² est 2x, donc la dérivée de 2x² est 2 x 2x = 4x.

La dérivée de - 3x est - 3.

La dérivée de 5 est 0.On en déduit que la dérivée de f est f '(x) = 4x - 3.

2- Produit et quotient de deux fonctionsSoient u et v deux fonctions dérivables sur D.La fonction dérivée de uv est (uv)' = u'v + v'u.Si v ne s'annule pas sur D, - la fonction dérivée de

1 v est 1 v'=-v' v2 - la fonction dérivée de u v est u v'=u'v-v'u

v2 ExempleSoit f la fonction définie sur ℝ par f (x) = (2x + 1)(x² - 3).On pose u(x) = 2x + 1, d'où u'(x) = 2 et v(x) = x² - 3, d'où v'(x) = 2x.

KB 2 sur 4

On a alors : f '(x) = u'(x)v(x) + v'(x)u(x) = 2(x² - 3) + 2x(2x + 1) = 2x² - 6 + 4x² + 2x = 6x² + 2x - 6.Remarque : on aurait pu développer f (x); f(x) = 2x3 + x2 - 6x - 3 d'où f '(x) = 6x2 + 2x - 6.

3- Dérivée de u(ax + b)

Soit u une fonction dérivable sur D, a et b deux réels tels que ax + b ∈ D.La dérivée de la fonction f définie par f (x) = u(ax + b) est f '(x) = u'(ax + b)×a.

RemarqueLa fonction f est la composée de la fonction u et de la fonction affine définie par ax + b.

Exemple Soit f la fonction définie sur ℝ+ par fx=2x3.

On pose u(x) =

x; on a alors f (x) = u(2x + 3).

Comme u'(x) =

1

2x, la dérivée de f est f'x=1

2 2x3×2 =1

2x3.

D. Dérivée et sens de variationSoit f une fonction dérivable sur un intervalle I et soit f ' sa dérivée.Si f ' est strictement positive sur I, sauf peut être en quelques points où f ' s'annule, alors f est

strictement croissante sur I.Si f ' est strictement négative sur I, sauf peut être en quelques points où f ' s'annule, alors f

est strictement décroissante sur I.Si f ' est nulle sur I, alors f est constante sur I.Exemple Etudier les variations de la fonction f définie par f (x) = x² - 3x sur ℝ.

La dérivée de f est f '(x) = 2x - 3.

C'est une fonction affine qui s'annule pour x = 3/2.Sur ]-∞ ; 3/2] f ' est négative donc f est décroissante.Sur [3/2 ; +∞[ f ' est positive donc f est croissante.On résume cette étude dans le tableau suivant :Remarque La fonction f admet un minimum en x = 3/2.Quel que soit x, f (x)  f (3/2).Comme la dérivée s'annule en x = 3/2, la tangente à la courbe en ce point est parallèle à l'axe des

abscisses.KB 3 sur 4x signe de f '(x) f (x)3/2- ∞+∞ -+0 - 9/4 E. Approximation affine d'une fonctionSoit f une fonction dérivable en x0. Soit  la fonction définie par h=fx0h-fx0 h-f'x0.

On a d'une part

limh0

h=0, et d'autre part fx0h=fx0hf'x0hh.

Lorsque h est petit, le terme

hh est " très » petit, on peut le " négliger ».

On a ainsi :

fx0h≈fx0hf'x0 qui donne une approximation affine de f en x0.

Applications •pour

fx=x2 et x0=1, on obtient : 1h2 ≈1 2h. •pour fx=1 x et x0=1, on obtient : 1

1h≈1-h.

•pour fx=x et x0=1, on obtient : 1h≈1h 2.

KB 4 sur 4

quotesdbs_dbs35.pdfusesText_40
[PDF] trigonométrie 1ere sti2d cours

[PDF] arctan valeurs particulières

[PDF] production électricité particulier

[PDF] comment protéger le sol

[PDF] fonctions hyperboliques exercices corrigés

[PDF] arctan valeur remarquable

[PDF] fonction circulaire réciproque cours

[PDF] limite de arctan

[PDF] limite arctan en 0

[PDF] le pouvoir du peuple par le peuple pour le peuple

[PDF] fonctions trigonométriques réciproques pdf

[PDF] shlomo sand livres

[PDF] le peuple est il souverain dissertation

[PDF] exercices corrigés fonction arctangente

[PDF] fonction circulatoire définition