[PDF] FONCTION LOGARITHME Etudier la limite en +? de





Previous PDF Next PDF



Fonction carré et fonctions associées

appelle la courbe une parabole d'équation y = x². 2- Parité. La représentation graphique de la fonction carré possède un axe de symétrie qui est l'axe des 



I. Sens de variation dune fonction ; extréma

2) Cas d'une fonction dérivable ou monotone sur un intervalle I de IR : a) Observation des fonctions de référence : x ? x². Tableau de variation :.



Seconde Cours – fonction carrée et fonctions de degré 2

Propriété : Dans un repère la courbe représentative de la fonction carré est située au dessus de l'axe des abscisses. En effet



FICHE METHODE sur les FONCTION CARREE I) A quoi sert la

R(x) = x(100 –x) = 100x – x² . b) Remarques : Le monde est en perpétuelle évolution et les fonctions numériques servent à rendre compte de ces évolutions.



Dérivation

Soit f la fonction définie par f(x) = x² – 2. Cette fonction est dérivable en 2 et f '(2) = 4. L'équation de la tangente en 2 est y = f '(2)(x – 2) + f(2).



CHAPITRE 7 – Fonction carré et fonction inverse

Cours de Mathématiques – Classe de Seconde - CHAPITRE 7 – Fonction carré et fonction inverse A) La fonction "carré" : f(x) = x².



FONCTION LOGARITHME

Etudier la limite en +? de chacune des fonctions suivantes. a) Pour tout réel x > 3 f(x) = ln(x² – 3x + 1). b) Pour 





FONCTIONS DE REFERENCE

Démontrer que la fonction f définie sur R par f (x) = x2 ? 8x + 3 est strictement croissante sur l'intervalle 4;+????? . Soit a et b deux nombres réels 



Correction (très rapide) des exercices de révision

f(x)=x² f(x)=1/x. 2. Donne sans aucun calcul et sans utiliser la calculatrice



[PDF] FONCTIONS DE REFERENCE - maths et tiques

Définition : La fonction carré est la fonction f définie sur R par f (x) = x2 Propriété : La fonction carré est strictement décroissante sur l'intervalle 



[PDF] LES FONCTIONS DE REFERENCE - maths et tiques

On considère la fonction f définie par f(x) = x2 1) Compléter le tableau de valeurs suivant : x -3 -2 -1 0



[PDF] Fonctions de deux variables

a) Le graphe de (xy) ?? x + y + 1 est le plan passant par (001) (102) et (012) b) Le graphe de (xy) ?? ?1 ? x2 ? y2 est ”l'hémisph`ere nord”



[PDF] FORMULAIRE dINTÉGRATION Dans ce qui suit c est une

FORMULAIRE d'INTÉGRATION Dans ce qui suit "c" est une constante réelle PRIMITIVES connues en terminale ? a dx = ax + c ? x dx = x2 2 + c ? xm dx =



[PDF] m2_livre2017-completpdf - Institut de Mathématiques de Toulouse

Dans ce module il est question de fonctions de plusieurs variables et d'équations différentielles Certains passages de ce cours comportent des trous ils sont 



[PDF] Chapitre 1 - Fonctions de plusieurs variables Limites dans R

Exercice 6 Déterminer et représenter le domaine de définition maximal des fonctions de deux variables suivantes : f1 : (x y) ?? ??y + x2



[PDF] Intégrales de fonctions de plusieurs variables - Mathématiques

Pour calculer cette intégrale il suffit de trouver une primitive de f c'est-`a-dire une fonction F dont la dérivée est égale `a f ; on a alors ?



[PDF] Feuille 9 Limites et continuité des fonctions

Feuille 9 Limites et continuité des fonctions Exercice 1 Calculer les limites suivantes : a) lim x!+1 2x + 5 3x 4 b) lim x!2 x2



[PDF] GENERALITES SUR LES FONCTIONS

f est une fonction définie sur un intervalle I Dire que f est croissante sur I signifie que pour tous réels x1 et x2 de I si x1 ? x2 alors f(x1) ? 

  • Comment calculer la fonction carré ?

    La fonction carré est la fonction f définie sur ? qui, à tout réel x, associe son carré x2, soit f(x) = x2.
  • Comment Etudier une fonction à plusieurs variables ?

    Ainsi, pour une fonction de deux variables (x, y) ?? f(x, y) : — le graphe de f est un sous-ensemble de l'espace R3 muni des coordonnées (x, y, z); — l'ensemble de définition de f est un sous-ensemble du plan horizontal muni des coor- données (x, y); — le dessin des lignes de niveau de f se situe lui-aussi dans le plan
  • Comment déterminer le domaine de définition d'une fonction à plusieurs variables ?

    Si f est une fonction (à 2 ou 3 variables), l'ensemble des valeurs en lesquelles on peut évaluer f est le domaine de définition de f . On note D(f ). f : R×R ? R (x,y) ? 1 x ? y . D(f ) = {(x,y) ? R×R: x = y}.
  • 0 a > , alors f est croissante sur ?. 0 a < , alors f est décroissante sur ?. 0 a = , alors f est constante sur ?.

Ch5 : Fonction Logarithme (TS)

- 1 /5 -

FONCTION LOGARITHME

I. DEFINITION DU LOGARITHME

a) Définition

Problème

Soit a un réel strictement positif.

Démontrer que l"équation e

x = a admet une solution unique a dans IR. (théorème des valeurs intermédiaires appliqué à la fonction x

¾¾® exp(x)

Pour tout nombre réel a strictement positif, il existe un unique réel x tel que ex = a Par convention, on note ce nombre ln(a) que l"on appelle logarithme népérien de a.

Exemples

¨ Le nombre x tel que e

x = 3 est ln 3.

¨ Le nombre x tel que e

x = 5 est ln 5 ainsi 5e5ln=.

Conséquences

¨ ln e = 1 et ln 1 = 0

¨ x

¾¾® ln(x) est définie sur ô +*

¨ Pour tout nombre réel a strictement positif, aealn=.

Pour tout nombre réel a, ()aelna=.

On dit que la fonction logarithme est la fonction réciproque de la fonction exponentielle, c"est à

dire :

· y = ln(x) Û e

y = x · Les deux courbes sont symétriques par rapport à la première bissectrice (y = x) b) Propriétés Si a et b sont deux réels strictement positifs alors ln(a.b) = ln(a) + ln(b)

Démonstration :

e ln(ab) = ab = e ln(a)e ln(b) = e ln(a) + ln(b) la fonction exponentielle étant strictement croissante : ln(a.b) = ln(a) + ln(b)

Ch5 : Fonction Logarithme (TS)

- 2 /5 -

Remarque :

Cette propriété se généralise au cas d"un produit de trois, quatre, ... facteurs, ln(a

1.a2. ... .an) = ln(a1) + ln (a2) + ... + ln(an)

Elle sert dans les deux sens. Par exemple :

ln(6) = ln(3×2) = ln(3) + ln(2) Elle peut servir à simplifier certaines expressions. ln(x + 1) + ln(2x + 1) = ln((x + 1).(2.x + 1)) = ln(2x

2 + 3x +1)

Si a et b sont deux réels strictement positifs et n est un entier alors : ln ((( 1 a = - ln(a) ln ((( a b = ln(a) - ln(b) ln(an) = n ´ ln(a) ln( )a = 1 2 ln(a)

En résumé, le logarithme népérien a la particularité de transformer les produits en sommes, les

quotients en différences et les puissances en multiplications.

Démonstrations :

· On a : a ´ 1

a = 1. Donc : ln ((( )))a ´ 1 a = ln (1) ln (a) + ln 1 a = 0 ln 1 a = - ln (a)

· On peut écrire : ln

a b = ln ((( )))a´1 b = ln (a) + ln ((( 1 b = ln (a) - ln (b)

· Soit n un entier positif.

)))lorsque n est négatif, a est remplacé par1 a ln (a n) = ln(a´a´ ... ´a) = ln (a) + ln (a) + ... + ln(a) = n ´ ln (a) · Lorsque a est un réel strictement positif, on a a× a = a. Ainsi :

Exemples:

Simplifier chacune des expressions suivantes :

A = ln(24) B = ln

( )72 C = ln(x + 3) - ln(2x + 1) D = ln (8) + ln (10) + ln 1 40

E = ln (3x) - ln (3) F = ln

3

4 + ln (((

8

3 - ln ( )23

G = ln

( )7-3+ 2 ln (49) H = 4 ln (25) - 2 ln 5

Ch5 : Fonction Logarithme (TS)

- 3 /5 -

II. ETUDE DE LA FONCTION LOGARITHME

a) Variations La fonction logarithme est dérivable sur ] 0 ; + d [

Sa dérivée est : ( )ln(x)" = 1

x

Démonstration :

( )e ln(x)" =( )x" Û ( )ln(x)"´e ln(x) = 1 Û ( )ln(x)"´x = 1 Û ( )ln(x)" = 1 x Sachant que la dérivée de la fonction logarithme est 1 x et qu"elle est définie sur ô+*, la dérivée est positive, et la fonction est donc croissante sur cet intervalle.

D"où le tableau de variations suivant :

x f"(x) f(x) 0 d + d +d et la courbe suivante :

Pour tous réels a et b strictement positifs,

· ln a > ln b équivaut à a > b

· ln a = ln b équivaut à a = b

Ch5 : Fonction Logarithme (TS)

- 4 /5 - conséquences :

Pour tout réel x strictement positif :

· ln x = 0 équivaut à x = 1

· ln x < 0 équivaut à 0 < x < 1

· ln x > 0 équivaut à x > 1

b) Limites

Les limites suivantes sont à connaître :

limx ® +¥ ln x = +¥ limx ® 0 ln x = -¥ limx ® +¥ ln x x = 0

Conséquence :

L"axe des ordonnées est asymptote verticale à la courbe représentant ln.

Exemples :

Etudier la limite en +¥¥¥¥ de chacune des fonctions suivantes. a) Pour tout réel x > 3, f(x) = ln(x² - 3x + 1). b) Pour tous réels x > - 1 2 , g(x) = ln(x + 3) - ln(2x + 1).

Examinons la limite en +

d : on obtient une forme indéterminée du type " d - d ».

Pour déterminer la limite de f(x) en +

d, nous allons devoir en modifier l"écriture. f(x) = ln(x + 3) - ln(2x + 1) = ln x + 3

2x + 1

Or, lim

x ® +d ((( x + 3

2x + 1 = 1

2 (mise en facteur de x) donc : lim x ® +d g(x) = ln ((( 1

2 = - ln(2)

c) Fonction ln(u) Si u est une fonction dérivable et strictement positive sur un intervalle I alors : Ln (u) est dérivable sur l"intervalle I et (ln u)" = u" u

Exemples :

··· f est la fonction définie sur

ôôôô par f(x) = ln(x² + 1).

Le polynôme u définie par u(x) = x² + 1 est strictement positif et dérivable sur

Donc f est dérivable sur

ô et f "(x) = 2x

x² + 1

··· La fonction g : x aaaa ln(2x - 1) est définie pour 2x - 1 > 0, c"est à dire pour x > 1

2

Alors g est dérivable sur ] 1

2 ; +¥ [, et pour tout xÎ] 1 2 ; +¥ [, g"(x) = 2

2x - 1

Ch5 : Fonction Logarithme (TS)

- 5 /5 -

III. Equations et inequations

Méthode :

Pour résoudre une équation du type ln u(x) = ln v(x) (respectivement une inéquation du type ln

u(x) ³ ln v(x) ) :

- on détermine l"ensemble des réels x tels que u(x) > 0 et v(x) > 0 (dans ce cas l"équation est

bien définie) ;

- on résout dans cet ensemble l"équation u(x) = v(x) (respectivement l"inéquation u(x) ³ v(x)).

Exemples :

··· Résoudre l"équation : ln(2x - 4) = 0 - Il faut tout d"abord 2x - 4 > 0, c"est à dire x > 2 - Puis on résout ln(2x - 4) = 0 équivalant à 2x - 4 = 1 , c"est à dire x = 5 2 ··· Résoudre l"inéquation : ln(x - 10) < 0 ln(x - 10) < 0 équivaut à 0 < x - 10 <1, c"est à dire : 10 < x < 11.

L"ensemble des solutions est alors : ] 10 ; 11 [.

··· Résoudre l"équation : ln(x² - 4) = ln(3x). - on cherche les nombres x tels que x² - 4 > 0 et 3x > 0.

Or x² - 4 > 0 lorsque xÎ] -¥ ; -2 [

? ] 2 ; +¥ [ et 3x > 0 lorsque x > 0. L"équation sera alors résolue dans l"ensemble I = ] 2 ; +¥ [. - de plus x² - 4 = 3x signifie x² - 3x - 4 = 0.

On trouve D = 25 et les solutions sont x

1 = -1 et x2 = 4.

donc la seule solution de l"équation ln(x² - 4) = ln(3x) est 4. ··· Résoudre l"inéquation : ln(2x + 4) ³³³³ ln(6 - 2x).

On cherche les réels x tels que 2x + 4 > 0 et 6 - 2x > 0, c"est à dire tels que x > -2 et x < 3.

L"inéquation doit alors être résolue dans l"ensemble : I = ] -2 ; 3 [. De plus, 2x + 4 ³ 6 - 2x équivaut à x ³ 1 2

L"ensemble des solutions est alors : ] -2 ; 3 [

∩ [ 1 2 ; +¥ [, c"est à dire [ 1 2 ; 3 [ · Résoudre l"équation : (ln x)² - 3 ln x - 4 = 0 avec x >0 On pose X = ln x et on obtient l"équation : X² - 3X - 4 = 0

D = 25. Les solutions sont alors : X

1 = -1 et X2 = 4

On résout alors les équations : ln x = -1 et on obtient : x = e -1 ln x = 4 et on obtient : x = e 4

Les deux solutions de l"équation sont alors e

-1 et e4.

IV. LOGARITHME DECIMAL

La fonction logarithme décimal, notée log, est la fonction définie sur ] 0 ; +¥ [ par : log (x) = ln (x) ln (10).

Ainsi log(1) = 0, log(10) = 1.

Pour tout entier n, log(10

n) = n.quotesdbs_dbs35.pdfusesText_40
[PDF] trigonométrie 1ere sti2d cours

[PDF] arctan valeurs particulières

[PDF] production électricité particulier

[PDF] comment protéger le sol

[PDF] fonctions hyperboliques exercices corrigés

[PDF] arctan valeur remarquable

[PDF] fonction circulaire réciproque cours

[PDF] limite de arctan

[PDF] limite arctan en 0

[PDF] le pouvoir du peuple par le peuple pour le peuple

[PDF] fonctions trigonométriques réciproques pdf

[PDF] shlomo sand livres

[PDF] le peuple est il souverain dissertation

[PDF] exercices corrigés fonction arctangente

[PDF] fonction circulatoire définition