[PDF] Chapitre 1 Suites réelles et complexes





Previous PDF Next PDF



S Antilles – Guyane septembre 2018

Exercice 4 Candidats n'ayant pas suivi l'enseignement de spécialité 5 points. On considère la suite (un) définie par u0=1 et pour tout entier naturel n 



Chapitre 1 Suites réelles et complexes

Exemple. La suite de Syracuse d'un nombre entier N est définie par récurrence de la mani`ere suivante : u0 = N et pour tout entier n ? 0 : un+1 = {.



S Amérique du Sud novembre 2018

On considère la suite (un) définie par u0=1 et u1=k et pour tout entier naturel n par : un+2= un+1. 2. k un . On admet que tous les termes de la suite (un) 



Sans titre

Démontrer par récurrence pour tout entier naturel n ? 1. 2. 2 1 n n. + ? . Exercice 5. On considère la suite (un) d'entiers naturels définie par: u0 = 1 



Spécialité Métropole candidat libre 2

commun à tous les candidats. 5 points. On considère la suite (un) définie part : u0=1 et pour tout entier naturel n



Nouvelle Calédonie mars 2019

On considère la suite (un) à valeurs réelles définie par u0=1 et pour tout entier naturel n



S Asie juin 2017

On considère la suite (un) définie par : u0=1 et pour tout entier naturel n un+1=(n+1. 2n+4)un . On définit la suite (vn) par pour tout entier naturel n 



Antilles-Guyane-Septembre-2014.

On considère la fonction f définie et dérivable sur l'intervalle [0;+?[ par f Soit la suite (un) définie par u0 =1 et pour tout entier naturel n ...



Devoir surveillé n°4 : un corrigé

Devoir surveillé n°4 : un corrigé. EXERCICE 4.1 (8 points). On considère la suite (un) d'entiers naturels définie par u0 = 1 et pour tout entier naturel n 



Suites 1 Convergence

Calculer la limite de la suite définie par : u0 = 4 et pour tout n ? N un+1 = 4un +5 un +3 .



[PDF] 1 On considère la suite (un) définie par u0 = 1 2 et telle que pour

Conclusion : Pn est vrai pour tout n entier naturel c) Démontrer que la suite (un) est croissante Comme les un sont tous positifs comparons un + 1



[PDF] On considère la suite (un) définie par u0 = 0 et pour tout entier

EXERCICE 1 : On considère la suite (un) définie par u0 = 0 et pour tout entier naturel n un+1 = un + 2n + 2 1 £?? §?£?? §? u1 §? u2º u1 = u0 + 2 × 0+2= 



[PDF] Feuille dexercices n°1 : Suites réelles - Arnaud Jobin

On considère la suite (un)n?1 définie par u1 = 1 et pour tout entier naturel non nul n par : un+1 = F(un) a Montrer que pour tout réel x : ex ? x + 1



[PDF] Suites - Exo7 - Exercices de mathématiques

vn+1 +un+1 = vn +un La suite v+u est constante et donc pour tout entier naturel n on a vn +un = v0 +u0 En additionnant 



[PDF] S Asie juin 2017 - Meilleur En Maths

On définit la suite (vn) par pour tout entier naturel n : vn=(n+1)un 1 La feuille de calcul ci-dessous présente les valeurs des premiers termes des suites ( 



[PDF] Chapitre 1- Les suites numériques

2) On considère la suite (un) définie par u0 = 0 et pour tout n : un+1 = f (un) a) Démontrer par récurrence que pour tout entier naturel n 0 ? un ? un+1 



[PDF] Nouvelle Calédonie 28 novembre 2017 - APMEP

28 nov 2017 · On considère la suite des nombres complexes (zn) définie pour tout entier naturel n par zn = 1+ i (1? i)n 1 Pour tout entier naturel n on 



[PDF] Corrigé du baccalauréat Polynésie 2 juin 2021 ÉPREUVE - APMEP

2 jui 2021 · On considère la suite (un) définie par u0 = 10000 et pour tout entier naturel n : un+1 = 095un +200 1 • u1 = 095×u0 +200 = 0 



[PDF] ( 3 points ) On considère la suite (un) définie par { u0 = 1 = un +2n +

2 a Démontrer que pour tout entier naturel n un > n2 Démonstration par récurrence : – Initialisation : u0 = 



[PDF] peuilles d9exer™i™es n¦U X gonvergen™e de suites - AlloSchool

valeur de u0 Exercice (d'après EDHEC) On considère pour tout entier naturel n la fonction fn définie par fn(x) = x5 + nx ? 1 1

:

Chapitre 1Suites r´eelles et complexes

Dans ce chapitre,Kd´esigne le corpsRdes nombres r´eels, ou le corpsCdes nombres complexes. PourK, nous noteronsle module de(´egal `a la valeur absolue de dans le cas r´eel). Nous appelleronsdistanceentre deux ´el´ementsetdeKle r´eel.

1.1 G´en´eralit´es

D´efinition 1.1.1.(1) Une suite `a valeurs dansKest une famille d"´el´ements deKin- dex´ee par l"ensembleNdes entiers naturels. La donn´ee d"une suite ()N´equivaut `a la donn´ee de l"application NK (2) Une sous-suite (ou suite extraite) d"une suite ()Nest une suite de la forme (k)No`u lessont des entiers tels que 0 1 2 Si ()Nest donn´ee par l"application:NK, alors (k)Nest donn´ee par l"application, o`uest d´efinie par() =. Une suite peut ˆetre d´efinie de plusieurs fa¸cons : - Par une formule explicite := 22 - Par une r´ecurrence :0= 1 et, pour toutN,+1=2+ 1 - Abstraitement :est le-i`eme nombre premier. Il arrive que les premiers termes d"une suite ne soient pas d´efinis. Par exemple, dans la suite 2 2 les termes0et1ne sont pas d´efinis. On notera ()2cette suite. ´Etant donn´ee une suite ()N, on a deux suites extraites importantes : la suite (2)Ndes termes pairs, et la suite (2+1)Ndes termes impairs. Exemple.La suite de Syracuse d"un nombre entierest d´efinie par r´ecurrence, de la mani`ere suivante :0=et pour tout entier0 : +1=? n

2siest pair

3+ 1 siest impair

Lothar Collatz a conjectur´e (en 1937) que, pour tout 0, il existe un indicetel que= 1. Une fois que le nombre 1 est atteint, la suite des valeurs 142142 se

r´ep`ete ind´efiniment. La conjecture reste ouverte aujourd"hui (2011). Elle a ´et´e v´erifi´ee par

ordinateur pour 262.

1.2 Convergence d"une suite r´eelle ou complexe

La d´efinition moderne de la limite, encore utilis´ee aujourd"hui, est donn´ee ind´epen- damment par Bolzano en 1816, et par Cauchy en 1821 dans sonCours d"analyse de l"´Ecole royale polytechnique. D´efinition 1.2.1.On dit qu"une suite ()Nd"´el´ements deKconvergeversKsi : pour tout 0, il existeNtel que, pour tout, on ait ou, avec des quantificateurs, 0N On dit qu"une suitedivergesi elle ne converge pas. Ceci se traduit de la fa¸con suivante : pour tout 0 (arbitrairement petit), il existe un rang (l"entier) `a partir duquel tous les termes de la suite sont `a une distanceinf´erieure `ade. Insistons sur le fait qued´epend de!

Exemples.a) Montrons que la suite (1

)1converge vers 0. Soit 0, on cherche un entiertel que, pour tout, on ait1 , c"est-`a-dire1. On constate que, si l"on pose=(1 ) + 1, alors1et donc, pour tout, on a bien1. Ainsi, pour montrer que () converge vers`a partir de la d´efinition, on fixe 0 et on cherche `a traduire la condition en une condition de la forme, l"entier´etant construit au cours du raisonnement. b) Probl`eme concret : comment calculer? Plus pr´ecis´ement, comment calculer des valeurs approch´ees deavec une pr´ecision arbitraire? Commeest irrationnel, son 3

´ecriture d´ecimale n"est ni finie, ni p´eriodique. Une m´ethode naturelle est de construire

une suite () dont on sait calculer les termes et qui converge vers. Alors, par d´efinition de la convergence, pour tout 0, il existe un rang`a partir duquelest une valeur approch´ee de`apr`es. Siest explicite en fonction de, alors on sait calculer une valeur approch´ee deavec une pr´ecision arbitraire. Pour exprimer le fait que () converge vers, nous dirons queest lalimitede () quandtend vers +, et nous noterons lim +=ou lim=ou encore+ Pour que cette notation ait un sens, il faut montrer qu"une suiteconvergente admet une unique limite! Proposition 1.2.2.Si une suite converge, sa limite est unique. D´emonstration.Soit () une suite convergeant vers deux limiteset. Soit 0. Alors, comme () converge vers 1N1 et, comme () converge vers, 2N2

Alors, pourMax(12), nous avons

=() + () + 2 Ceci ´etant vrai pour tout, on en d´eduit que= 0, donc que=. (Nous avons utilis´e le fait (trivial) suivant : si un r´eel positif est plus petit que toute quantit´e strictement positive, alors il est nul.)

Nous avons clairement les ´equivalences :

lim=lim() = 0lim= 0 Si () converge, que peut-on dire des suites extraites de ()? Proposition 1.2.3.Toute suite extraite d"une suite convergente converge vers la mˆeme limite. D´emonstration.Soit () une suite convergente, de limite. Soit (k) une suite extraite de (). Comme la suiteest une suite strictement croissante d"entiers, nous avons pour tout. Soit 0, alors, comme () converge vers, il existetel que, pour tout, on ait . Mais alors, pour tout, nous avons et par cons´equentk , d"o`u le r´esultat. 4

Ceci fournit des crit`eres de divergence :- si on peut extraire de () une suite divergente, alors () diverge

- si on peut extraire de () deux suites convergeant vers des limites diff´erentes, alors () diverge Par exemple, la suite= (1)diverge : la suite des termes pairs converge vers 1, la suite des termes impairs converge vers1. Remarquons aussi que la modification d"un nombre fini de termes n"aaucune incidence sur la convergence d"une suite. D´efinition 1.2.4.On dit qu"une suite () estborn´ees"il existe un r´eel 0 tel que l"on ait N La proposition suivante fournit un autre crit`ere de divergence. Proposition 1.2.5.Toute suite convergente est born´ee. La r´eciproque est fausse. D´emonstration.Soit () une suite convergente, de limite. D"apr`es la d´efinition de la limite, et en fixant= 1, on trouve qu"il existe un entier1tel que, pour tout1, on ait 1 d"o`u, pour tout1, =+ () + 1

On en d´eduit que, pour toutN,

Max(+ 10111)

ainsi la suite () est born´ee. Pour voir que la r´eciproque est fausse, il suffit de consid´erer

la suite= (1), qui est born´ee mais divergente.

1.3 Op´erations sur les limites

Nous allons montrer que le passage `a la limite est compatible avec les lois du corpsK.

Commen¸cons par ´enoncer un lemme.

Lemme 1.3.1.Le produit d"une suite born´ee par une suite tendant vers0tend vers0. D´emonstration.Soit () une suite born´ee, alors il existe un r´eel 0 tel que : N 5 Soit () une suite tendant vers 0, montrons que () tend vers 0. Soit 0, alors en consid´erant le r´eel il existeNtel que, pour tout, . Nous avons donc, pour tout d"o`u le r´esultat. Th´eor`eme 1.3.2.Soient()et()deux suites convergentes de limites respectiveset . Alors (1)La suite(+)converge vers+ (2)La suite()converge vers (3)Supposons= 0. Alors la suite(1 n)est bien d´efinie `a partir d"un certain rang, et converge vers 1 D´emonstration.(1) Soit 0. Comme () converge vers, nous avons 1N1 2 et, comme () converge vers, 2N2 2

Soit=(12). Alors, pour, nous avons

2et 2 d"o`u, par l"in´egalit´e triangulaire ce qui montre que (+) converge vers+. (2) On peut ´ecrire La suite´etant convergente, elle est born´ee (proposition 1.2.5). Comme () tend vers 0, le lemme 1.3.1 nous dit que le produit() converge vers 0. De mˆeme, le produit ()converge vers 0. Ceci montre, d"apr`es (1), queconverge vers

0, ce qu"on voulait. (3) Non d´emontr´e.

Proposition 1.3.3.Soit()une suite complexe. Alors()converge versCsi et seulement si les suites r´eellesRe()etIm()convergent respectivement versRe()et Im(). 6 D´emonstration.La d´emonstration repose sur le fait suivant : soit=+un nombre complexe, alors

Max() +

l"in´egalit´e de droite d´ecoule de l"in´egalit´e triangulaire, celle de gauche d´ecoule de l"´ecriture

2+2.

Posons= Re() et= Im(), alors Re() =Re() et Im() =

Im(). Soit 0. Siest inf´erieur `a, alors, par l"in´egalit´e de gauche, il en est de mˆeme pourRe()et pourIm(). R´eciproquement, siRe()et Im()sont inf´erieurs `a2, alors par l"in´egalit´e de droiteest inf´erieur `a.

D"o`u le r´esultat.

Par exemple, la suite complexe

=1 + 1+?2+ 4+ 3? converge vers 2. Cependant, il n"est pas toujours commode de se ramener aux parties r´eelles et imaginaires : par exemple pour ´etudier la suite () o`uC.

1.4 Suites r´eelles

1.4.1 Passage `a la limite et in´egalit´es

Th´eor`eme 1.4.1.Soient()et()deux suites r´eelles convergentes telles que N Alors limlim D´emonstration.Par l"absurde : supposons que limlim. Alors la limite de la suite () est strictement positive, notons-la. En prenant=

2, on trouve que, pour

suffisamment grand,appartient `a [

2+2] = [232], donc est positif. Ceci

contredit l"hypoth`ese. D"o`u le r´esultat. Attention : les in´egalit´es strictes ne passent pas `a la limite. Par exemple, nous avons pour toutN,1

0 et pourtant lim1= 0.

Th´eor`eme 1.4.2(Th´eor`eme des gendarmes).Soient(),()et()trois suites r´eelles telles que : ()N () ()et()convergent vers une mˆeme limite. 7

Alors()converge vers.

D´emonstration.Nous avons, pour toutN,

0 Comme () et () convergent vers une mˆeme limite, la suite () tend vers 0. Soit

0, alors il existetel que, pour tout,

0 ce qui montre que () tend vers 0. Commeconverge vers, on en d´eduit que =() converge vers. Ce qu"on voulait.

Par exemple, l"encadrement

R1sin()1

permet de montrer que la suite ( sin() ) tend vers 0. Ce r´esultat s"applique aux suites complexes : soient () une suite complexe et () une suite r´eelle, satisfaisant 1)N

2) lim= 0

Alors la suite () tend vers 0. Par exemple, la suite =3+4 tend vers 0, car son module est major´e par 2 Exemple.Voici un exemple de calcul de limite, r´esumant l"ensemble destechniques que nous avons vues jusqu"ici. PourN, posons =2+ cos() +?(+ 1)(+ 2) En divisant num´erateur et d´enominateur paron trouve =2 +cos() +?(1 +1)(1 +2) les suites ( cos() ), (1) et (2) convergent vers 0. De plus, nous avons 1? (1 +1)(1 +2)(1 +1)(1 +2) donc le terme central converge vers 1 par le th´eor`eme des gendarmes. Ainsi, la suite () converge vers 2 +1. 8

1.4.2 Suites tendant vers l"infiniD´efinition 1.4.3.Soit () une suite r´eelle.

(1) On dit que () tend vers +si : pour tout 0, il existeNtel que, pour tout, on ait ou, avec des quantificateurs, 0N (2) On dit que () tend verssi () tend vers +. Une suite qui tend vers l"infini est divergente. Dans certains livres, on trouve mˆeme l"expression"() diverge vers +».quotesdbs_dbs42.pdfusesText_42
[PDF] corrigé polynésie 2013 maths

[PDF] un 1 un 2 2un 1

[PDF] un 1 a le meme signe que (- 1 n

[PDF] u n 2 )= 3un 1 )- 2un

[PDF] on considere la suite (un) definie par u0=0 et pour tout entier naturel n

[PDF] un+1=3un-2n+3

[PDF] démontrer par récurrence que pour tout entier naturel n un 1 a le même signe que (- 1 n

[PDF] on considere la suite un definie par u0 2 et un 1 un 2 2un 1

[PDF] exprimer vn puis un en fonction de n

[PDF] trouver un a partir de un+1

[PDF] comment démontrer qu'une suite est géométrique

[PDF] asie 2013 maths

[PDF] on souhaite ecrire un algorithme affichant pour un entier naturel n non nul donné

[PDF] on considere la suite (un) definie par u0=1 et pour tout entier naturel n un+1=racine 2un

[PDF] but d une critique de film