[PDF] Exercices corrigés enseignant d'analyse numérique





Previous PDF Next PDF



Analyse Numérique - Exercices Corrigés Analyse Numérique - Exercices Corrigés

de l'itération dans l'intervalle de convergence puis trouver x limite de la suite. Donner l'ordre de la méthode. Exercice 6 On veut calculer les solutions de l 



Analyse Numérique

et les exercices. 1.2.2 Perte de chi res signi catifs. Pour faciliter la compréhension nous nous placerons dans l'environnement rassurant de la base 10



ANALYSE NUMERIQUE Mazen SAAD

solutions sont les couples (u P) avec. P = (kπ)2



Analyse Numérique : SMA-SMI S4 Cours exercices et examens Analyse Numérique : SMA-SMI S4 Cours exercices et examens

1.3 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19. 2 Approximations des solutions de l'équation f(x) = 0. 22. 2.1 



Analyse Numérique

le problème en un grand nombre de micro-problèmes puis de superposer les solutions de ces micro- exercice 82 avec une démonstration différente de celle qui ...



Exercices Corrigés - Analyse numérique et optimisation Une

27 jan. 2011 Correction. Dans un premier temps nous allons vérifier formellement que l'ex- pression de θ(t



Exercices et problèmes dAnalyse numérique avec Matlab Exercices et problèmes dAnalyse numérique avec Matlab

solutions approchées sont très différents quand i devient grand avec n suffisamment grand. 2. Les solutions de y (t) = −b2y(t) forment un sous-espace 



Chapitre 1 : Introduction à LAnalyse Numérique

Utiliser une approximation numérique de la solution ! Page 5. 5/18. Quelques exemples. Calculer les racines du polynôme p(x) = ax2 + bx + c. Page 6. 6/18.





Analyse Numérique

1.5 Exercices du chapitre 1 . Un des buts de l'analyse numérique consiste ... Les zéros de f2 sont exactement les solutions de (2.2). D'autre.



ANALYSE NUMERIQUE Mazen SAAD

Devoir surveillé d'Analyse Numérique (2010) et son corrigé. Exercice 1. ... (exacte ou approchée) de la solution d'une équation ou d'un syst`eme ...



M33 Analyse numérique

On a inclus dans ce texte nombreux exercices corrigés. Ceux-ci de difficulté variée



Université Aix Marseille Licence de mathématiques Cours dAnalyse

17 nov. 2021 M. Schatzman Analyse numérique



Analyse numérique : Résolution de systèmes linéaires

18 mars 2013 Analyse numérique (Pagora 1A). Résolution de ... Exercice introductif (correction) ... Le système précédent admet une infinité de solution.



Exercices Corrigés - Analyse numérique et optimisation Une

9 janv. 2011 d'introduction `a l'analyse numérique et l'optimisation de Grégoire Allaire [1] ... de la solution dans l' exercice précédent on montre que.



Université Aix Marseille Licence de mathématiques Cours dAnalyse

17 nov. 2021 M. Schatzman Analyse numérique



Analyse Numérique 0 0

Les uii étant non nuls l'inconnue x solution du syst`eme linéaire (1.3) est donnée par On revient sur la premi`ere matrice donnée dans l'exercice 2 :.



Exercices corrigés

Analyse numérique. 1ère année. Exercices corrigés. NB : Les exercices corrigés ici sont les exercices proposés durant les séances de cours.



Analyse Numérique

Ce document propose un recueil d'exercices corrigés d'analyse numérique. Le mathématique de l'analyse numérique consiste à modéliser une solution à un.



Analyse Numérique - univ-toulousefr

sance raisonnable de l’analyse des fonctions d’une variable réelle disons du théorème des valeurs intermédiaires jusqu’à la formule de Taylor (qui sera rappelée) et une cer-taine familiarité avec les bases de l’algèbre linéaire (systèmes linéaires applications linéaires matrices et déterminants)



Analyse Numérique

Solutions Exercice 1 (a) g(x) = 1 1 5 sin(4x);x2R Montrons que gest contractante sur R on a : g0(x) = 4 5 cos(4x) et jg0(x)j 4 5; donc d'après le cours gest contractante de rapport de contraction inférieur ou égal à 4 5 (b) g(x) = 2+ 1 2 jxj;x2[ 1;1] Soient x;y2[ 1;1] montrons que jg(x) g(y)j 1 2 jx yjet le rapport de contraction est



Grenoble INP - Pagora Analyse numérique

1ère année

Exercices corrigés

NB : Les exercices corrigés ici sont les exercices proposés durant les séances de cours. Les corrections données

sont des corrections plus détaillées que celles fournies durant le cours (si le temps a permis de donner ces

corrections). Si vous avez des questions concernant ces exercices, n"hésitez pas à envoyer un mail à votre

enseignant d"analyse numérique pour lui poser une question. Si vous trouver des coquilles, des erreurs dans

le présent document, n"hésitez pas à le signaler à votre enseignant par un mail.

Chapitre 1 : Introduction au calcul approché

Exercice 1Montrer que9325s"écrit bien(10010001101101)2en base2puis reconvertir(10010001101101)2

en base10.Pour convertir un entier de la base10à la base2(on verra que la méthode diffère légèrement pour un

nombre décimal un peu plus tard), on divise l"entier par2(division euclidienne) et le reste correspond au

dernier chiffre de l"entier en base2. Pour9325, cela donne

9325 = 24662 +1

et on itère le processus sur le quotient obtenu (jusqu"à ce qu"il vaille1). Ainsi puisque

4662 = 22331 +0

On peut réécrire9325sous la forme

9325 = 2(22331 + 0) + 1 = 222331 + 210+ 201

et01sont les 2 derniers chiffres de9325écrit en base2. Pour enfoncer le clou, on détaille encore l"itération

suivante

2331 = 21165 +1

9325 = 2

2(21165 + 1) + 210+ 201= 231165 + 221+ 210+ 201

et101sont les 3 derniers chiffres de9325écrit en base2. On affiche ensuite le processus itératif dans son

entier :9325 = 24662 +1

4662 = 22331 +0

2331 = 21165 +1

1165 = 2582 +1

582 = 2291 +0

291 = 2145 +1

145 = 272 +1

72 = 236 +0

36 = 218 +0

18 = 29 +0

9 = 24 +1

4 = 22 +0

2 = 21 +0

1 = 20 +1

1 Donc, on peut décomposer9325de la manière suivante

9325 = 2

131+ 2120+ 2110+ 2101+ 290+ 280+ 270

+ 2

61+ 251+ 240+ 231+ 221+ 210+ 201

On a bien montré que(9325)10= (10010001101101)2. Il ne reste plus qu"? reconvertir ce nombre binaire en

base10. Pour ce faire, on va procéder de manière itérative. On commence par cette première étape,1est

le chiffre le plus fort (le plus à gauche) de(10010001101101)2et on construit le résultat intermédiaire de la

manière suivante, on multiplie par 2 le résultat intermédiaire précédent (au départ 0) et on ajoute le chiffre

le plus fort restant à traiter. On commence donc par

20 +1= 1 = 201

Le résultat intermédiaire est donc1et il ne reste plus qu"à traiter0010001101101du binaire (10010001101101)

2. On itère le processus. On multiplie par2le résultat intermédiaire (ici 1) puis on ajoute

le chiffre le plus fort restant à traiter (soit ici0). D"où

21 +0= 2 = 211+ 200

Il ne reste plus qu"à traiter010001101101du binaire(10010001101101)2. Si on détaille l"étape suivante, on a

22 +0= 4 = 221+ 210+ 200

Il ne reste plus qu"à traiter10001101101du binaire(10010001101101)2. On affiche ensuite le processus itératif

dans son entier :20 +1= 1

21 +0= 2

22 +0= 4

24 +1= 9

29 +0= 18

218 +0= 36

236 +0= 72

272 +1= 145

2145 +1= 291

2291 +0= 582

2582 +1= 1165

21165 +1= 2331

22331 +0= 4662

24662 +1= 9325

On vérifie donc bien que(9325)10= (10010001101101)2. Notons bien que de processus décrit ici est juste le

premier processus mais pris en sens inverse.

Exercice 2Écrire(34)10et(27)10en binaire puis effectuer l"opération en binaire(34)10+(27)10et vérifier

que le résultat obtenu soit le bon. 2 Convertissons tout d"abord34en binaire. Cela donne

34 = 217 +0

17 = 28 +1

8 = 24 +0

4 = 22 +0

2 = 21 +0

1 = 20 +1

On a donc(34)10= (100010)2. Convertissons maintenant27en binaire. On a

27 = 213 +1

13 = 26 +1

6 = 23 +0

2 = 21 +1

1 = 20 +1

et(27)10= (11011)2. On effectue maintenant l"addition de(100010)2et(11011)2. Pour rappel, l"addition en

binaire fonctionne de la manière suivante+01 001 1110

D"où l"opération suivante

1 0 0 0 1 0

+ 1 1 0 1 1= 1 1 1 1 10 1 On a(100010)2+ (11011)2= (111101)2. Or(34)10+ (27)10= (61)10, vérifions si(61)10= (111101)2.

20 +1= 1

21 +1= 3

23 +1= 7

27 +1= 15

215 +0= 30

230 +1= 61

On a bien(61)10= (111101)2, le résultat obtenu en binaire est bien conforme au résultat obtenu en base10.

Exercice 3Écrire(90)10et(97)10en binaire puis effectuer l"opération en binaire(90)10(97)10et vérifier

que le résultat obtenu est le bon.Convertissons tout d"abord90en binaire. Cela donne

90 = 245 +0

45 = 222 +1

22 = 211 +0

11 = 25 +1

5 = 22 +1

2 = 21 +0

1 = 20 +1

3 On a donc(90)10= (1011010)2. Convertissons maintenant97en binaire. On a

97 = 248 +1

48 = 224 +0

24 = 212 +0

12 = 26 +0

6 = 23 +0

3 = 21 +1

1 = 20 +1

et(97)10= (1100001)2. On effectue maintenant la multiplication de(1011010)2par(1100001)2. Pour rappel,

la multiplication en binaire fonctionne de la manière suivante01 000 101

D"où l"opération suivante

1 0 1 1 0 1 0

1 1 0 0 0 0 11 0 1 1 0 1 0

+ 0 0 0 0 0 0 00 + 0 0 0 0 0 0 00 0 + 0 0 0 0 0 0 00 0 0 + 0 0 0 0 0 0 00 0 0 0 + 1 0 1 1 0 1 00 0 0 0 0 + 1 0 1 1 0 1 00 0 0 0 0 0= 1

10101011101010 0 1 1 0 1 0

On a(1011010)2(1100001)2= (10001000011010)2. Or(90)10(97)10= (8730)10, vérifions si(8730)10= (10001000011010) 2.

20 +1= 1

21 +0= 2

22 +0= 4

24 +0= 8

28 +1= 17

217 +0= 34

234 +0= 68

268 +0= 136

2136 +0= 272

2272 +1= 545

2545 +1= 1091

21090 +0= 2182

22182 +1= 4365

24365 +0= 8730

On a bien(8730)10= (10001000011010)2, le résultat obtenu en binaire est bien conforme au résultat obtenu

en base10. 4

Exercice 4Si on dispose de4bits (bit de signe compris), quelles valeurs peuvent prendre les entiers codés

sur ces4bits?Si on dispose de4bits dont1de signe, il ne reste plus que3bits pour coder les entiers naturels (ceux plus

grand que0). Ils ne peuvent donc prendre que23valeurs distinctes dont la valeur0. Les entiers naturels

codés sont ainsi0,1,2,3,4,5,6, et7 = 231. Maintenant, si on tient compte du bit de signe, les entiers

codés devraient pouvoir varier entre7et7.

Cependant deux combinaisons auraient la même valeur0:1000et0000, le chiffre en gras désigne ici le bit

de signe. Pour éviter cette redondance, on pose1000 =8(classiquement, le signe de bit lorsqu"il vaut1

indique un nombre négatif).

Finalement, si on dispose de4bits (bit de signe compris), on peut coder les entiers de valeurs comprises

entre8 =23et7 = 231.

Exercice 5Vérifier l"égalité entre(9;90625)10et(1001;11101)2.On distingue la partie entière et la partie décimale à traiter. On vérifier tout d"abord que(9)10= 10012, en

effet9 = 24 +1

4 = 22 +0

2 = 21 +0

1 = 20 +1

On a donc

9;90625 = 231+ 220+ 210+ 201+ 0;90625

Mais on a aussi

9;90625 = 231+ 220+ 210+ 201+ 21(20;90625)

9;90625 = 231+ 220+ 210+ 201+ 211;8125

9;90625 = 231+ 220+ 210+ 201+ 21(1+ 0;8125)

On vient donc de calculer le premier chiffre après la virgule de9;90625en binaire (soit ici1). On réitère le

même processus pour avoir le chiffre après la virgule suivant

9;90625 = 231+ 220+ 210+ 201+ 211+ 22(20;8125)

9;90625 = 231+ 220+ 210+ 201+ 211+ 221;625

9;90625 = 231+ 220+ 210+ 201+ 211+ 22(1+ 0;625)

Le deuxième chiffre après la virgule (en binaire) est donc1. Voici enfin directement, les traces des calculs

pour obtenir tous les chiffres nécessaires après la virgule

9;90625 = 231+ 220+ 210+ 201+ 211+ 221+ 231;25

9;90625 = 231+ 220+ 210+ 201+ 211+ 221+ 23(1+ 0;25)

9;90625 = 231+ 220+ 210+ 201+ 211+ 221+ 231+ 240;5

9;90625 = 231+ 220+ 210+ 201+ 211+ 221+ 231+ 240+ 25(20;5)

9;90625 = 231+ 220+ 210+ 201+ 211+ 221+ 231+ 240+ 251

On vérifie donc bien que(9;90625)10= (1001;11101)2. 5 Chapitre 2 : Résolution d"équations non-linéaires Exercice 6On définit la méthode du point fixe suivante x0fixé dans[a;b] x n+1=g(xn)

On suppose que cette suite admet une limite sur[a;b]notéel. Cette méthode est d"ordrepsijxn+1ljjxnljp

admet une limite réelle strictement positive lorsquentend vers l"infini.

On supposeg pfois dérivable sur[a;b]. En utilisant la formule de Taylor, montrer que la méthode est d"ordre

psi et seulement si g

0(l) =g00(l) =:::=g(p1)(l) = 0 etg(p)(l)6= 0On rappelle tout d"abord la formule de Taylor.

Soitk1un entier et soitfune fonction deRdansRkfois dérivable ena2R, alors il existe une fonction kdeRdansRtel que f(x) =f(a) +f0(a)(xa) +f00(a)(xa)22 +:::+f(k)(a)(xa)kk!+k(x)(xa)k et limx!ak(x) = 0 Maintenant, sigestpfois dérivable sur[a;b], on peut écrire que g(xn) =g(l) +g0(l)(xnl) +g00(l)(xnl)22 +:::+g(p)(l)(xnl)pp!+p(x)(xnl)p avec limx n!lp(xn) = 0

Posonsen=xnl, on axn+1=g(xn)et

e n+1=g(xn)g(l) =g0(l)(xnl) +g00(l)(xnl)22 +:::+g(p)(l)(xnl)pp!+p(xn)(xnl)p =g0(l)en+g00(l)e2n2 +:::+g(p)(l)epnp!+p(x)epn Si la métho deest d"ordre palors le quotienten+1e pntend vers un réel non-nul (carjxn+1ljjxnljpadmet une

limite réelle strictement positive et on enlève juste les valeurs absolues). Or d"après ce qui précède, on

a l"égalité suivante e n+1e pn=g0(l)e p1n+g00(l)2ep2n+:::+1e ng (p1)(l)(p1)!+g(p)(l)p!+p(xn)

A gauche de l"égalité, le terme tend vers un réel non-nul. Concernant les termes à droite, on a queen

tend vers0quandntend vers l"infini donc lim n!+1g 0(l)e p1n=0 sig0(l) = 0

1sinon

6

De même

lim n!+1g

00(l)2ep2n=0 sig00(l) = 0

1sinon

jusqu"à lim n!+11e ng (p1)(l)(p1)!=0 sig(p1)(l) = 0

1sinon

Par contre

g(p)(l)p!est un réel etp(xn)tend vers0. Par unicité de la limite des deux côtés de l"égalité,

il faut queg0(l) =g00(l) =:::=g(p1)(l) = 0pour que le côté droit tende vers un réel,g(p)(l)p!en

l"occurence. La limite réelle est en plus différente de0, donc on doit avoirg(p)(l)6= 0.

Si on a

g

0(l) =g00(l) =:::=g(p1)(l) = 0 etg(p)(l)6= 0

alors e n+1=epnp!g(p)(l) +epnp(xn) et en+1e pn=1p!g(p)(l) +p(xn) d"où commep(xntend vers0quandntend vers l"infini lim n!+1jen+1e pnj=1p!jg(p)(l)j 2R+ et la méthode est bien d"ordrep. Exercice 7 (ordre de convergence de la méthode de Newton)On rappelle ici la méthode de New-

ton, il s"agit d"une méthode du point fixe pour rśoudref(x) = 0sur[a;b]définissant la suite suivante8<

:x

0fixé dans[a;b]

x n+1=g(xn) =xnf(xn)f 0(xn)

On suppose que cette suite admet une limite sur[a;b]notéel. Montrer que sifest3fois dérivable sur[a;b]

et quef0(l)6= 0, alors la méthode de Newton est d"ordre2au moins.La fonctiongvaut ici g(x) =xf(x)f 0(x)

Sa dérivée vaut

g

0(x) = 1f0(x)f0(x)f(x)f00(x)(f0(x))2=f(x)f00(x)(f0(x))2

et enl, cette dérivée vaut0carf(l) = 0,lest la solution au problème étudié. Donc la méthode est d"ordre2

au moins (d"ordre2sig00(l)6= 0, d"ordre supérieur à 2 sinon). Si on va plus loin, calculons la dérivée seconde

deg g

00(x) =(f0(x)f00(x) +f(x)f000(x))(f0(x))22f(x)f0(x)(f00(x))2(f0(x))4

7

Elle vaut enl

g

00(l) =f00(l)f

0(l)

Donc sif00(l)6= 0alors la méthode de Newton est d"ordre2, sinon elle est d"ordre supérieur à 2.

Chapitre 3 : Approximation de fonctions

Méthode des moindres carrés

Exercice 8On dispose denpoints(xi;yi),i= 1;:::;net on suppose que la fonction modèle est de la forme

f(x;0) =0

Trouver0minimisant la quantité

S(0) =nX

i=1(yif(xi;0))2On cherche le minimum0tel queS(0) = min

02RS(0). Pour cela, on a besoin de calculer sa dérivéeS0(0).

Celle-ci vaut

S

0(0) =nX

i=1[2(yif(xi;0))] =2nX i=1(yi0)

Pour trouver un extremum local (minimum ou maximum local), il faut résoudre le problèmeS0(0) = 0.

Dans notre cas, on en déduit que

0=1n n X i=1y i

Il reste cependant à vérifier que0est bien un minimum et que celui-ci est global. Pour cela, étudions le

comportement deS(0). On a le tableau des variations suivant 0S

0(0)S(0)1

0 00+ +1+1S(0)0S(0)0+1+1Grâce à ce tableau, on vérifie que0=1n n X i=1y iminimise bien la quantitéS(0).

Exercice 9 (Régression linéaire)On dispose denpoints(xi;yi),i= 1;:::;net on suppose que la fonc-

quotesdbs_dbs48.pdfusesText_48
[PDF] analyse numérique exercices corrigés méthode de newton pdf

[PDF] analyse numérique exercices et problèmes corrigés

[PDF] analyse numérique interpolation polynomiale exercices corrigés

[PDF] analyse numérique matricielle exercices corrigés pdf

[PDF] analyse numérique matricielle pdf

[PDF] analyse numérique pour ingénieurs

[PDF] analyse physico chimique du lait cru pdf

[PDF] analyse physico chimique du lait de vache pdf

[PDF] analyse physico chimique du lait en poudre

[PDF] analyse physico chimique du lait ppt

[PDF] analyse physico chimique du miel

[PDF] analyse physico-chimique des dattes

[PDF] analyse psychologique gratuite

[PDF] analyse séquentielle des politiques publiques

[PDF] analyse sociologique film ressources humaines