[PDF] Baccalauréat ES — Spécialité





Previous PDF Next PDF



Niveau : Terminale ES Spé Maths Titre Cours : Matrices Matrices

Terminale ES Spé Maths. Titre Cours : Matrices Une matrice est un tableau de p lignes et q colonnes dont les coefficients sont des réels (voir des.



Sujet du bac ES Mathématiques Spécialité 2017 - Polynésie

MATHÉMATIQUES - Série ES Dans chaque exercice le candidat peut admettre un résultat précédemment donné dans le texte ... Soit la matrice M =.



Sujet du bac ES Mathématiques Spécialité 2017 - Liban

Le sujet est composé de 4 exercices indépendants. Le candidat doit traiter tous les exercices. Dans chaque exercice le candidat peut admettre un résultat 



Baccalauréat ES spécialité Index des exercices avec des graphes

bac-graphes-ES-spe Pour la suite de l'exercice on donne les matrices suivantes : ... Un élève a cours de mathématiques dans le bâtiment 1.



Utiliser linverse dune matrice pour résoudre un système d

Spécialité Mathématiques. Term ES. Utiliser l'inverse d'une matrice pour résoudre un système d'équations & courbes polynomiales. Exercice 1 : Dans une ferme 



Sujet du bac ES Mathématiques Spécialité 2017 - Am. du Nord

Le sujet est composé de 4 exercices indépendants. Le candidat doit traiter tous les exercices. Dans chaque exercice le candidat peut admettre un résultat 



Lycée Louise MICHEL Terminale ES Spé Maths MATHEMATIQUES

Exercice 2 Un calcul original de moyenne. 4 points. 1. a. La quatrième ligne de la matrice M1 représente les trois notes obtenues au premier trimestre par 



sur 9 Terminale ES Spé : Graphes 1. VOCABULAIRE DE BASE a

Exercice : Trouver le nombre chromatique c du graphe ci-contre. On a : ? = 4 donc c ? 5. Les points A B et C forment un sous graphe complet d'ordre 



Baccalauréat ES — Spécialité

3 févr. 2018 la matrice ligne traduisant l'état probabiliste au n-ième lancer. 1. (a) Représenter la situation par un graphe probabiliste de sommets A et B.



Sujet du bac ES Mathématiques Spécialité 2017 - Centres étrangers

Le sujet est composé de 4 exercices indépendants. Le candidat doit traiter tous les exercices. Dans chaque exercice le candidat peut admettre un résultat 



Devoir Surveillé n°1 Terminale ES Spé - AlloSchool

DS n°1 - Terminale ES Spé - Octobre 2016 Exercice 2 10 points Un constructeur d’ordinateurs portables fabrique 3 modèles La conception de chaque modèle nécessite le passage par 3postes detravail • Le tableau 1 indique lenombre d’heures nécessaires par modèle et par poste pour réaliser les ordinateurs



Exercices corrigés - Réduction des - bibmathnet

Correction Devoir Surveillé 2 : matrices et graphes TES spécialité Correction Devoir Surveillé 2 Maths Maths Term ES spé Term ES spé Exercice 1 2 Exercice 2 3 = 6 ×05 Exercice 3 2 = 05 +05 +1 Exercice 4 5 = (05 +05)+1+(15 +15) Exercice 5 45 = (1 +1)+(1 +05+1) Exercice 6 35 = 15 +2 Barème Exercice 1 (2 points)



MATRICES EXERCICES CORRIGES - Maurimath

MATRICES EXERCICES CORRIGES Exercice n° 1 On considère la matrice 1 6 8 4 0 7 3 11 22 17 01 8 A ? = 1) Donner le format de A 2) Donner la valeur de chacun des éléments a14 a23 a33et a32 3) Ecrire la matrice transposée Atde A et donner son format Exercice n° 2

Comment calculer la matrice de passage?

La matrice A est donc semblable à diag ( 1, 2, ? 4) diag ( 1, 2, ? 4), la matrice de passage étant P = ( 1 4 2 1 3 ? 3 1 ? 2 2). P = ? ? ? 1 4 2 1 3 ? 3 1 ? 2 2 ? ? ?.

Quel est le coefficient de la spé maths ?

Le programme reprend les programmes de seconde et de première sans introduire de notion nouvelle, afin de consolider le travail des classes précédentes. En Terminale, le programme de la spé maths se corse encore un peu. Avec 6h de cours par semaine (contre 4h en première), le coefficient passe à 16 !

Comment passer la spé maths en terminale ?

Si vous décidez de garder la spé maths en terminale: vous êtes évalué (e) par une épreuve finale ( coeff 16!) et au grand oral du bac au moins un de vos sujets sera lié au mathématiques. Cette épreuve se déroule au printemps et comporte 3 à 5 exercices portant sur le programme de terminale.

Comment calculer l'existence d'une matrice?

Pour prouver l'existence d'une matrice B telle que B 3 = A, l'idée est de d'abord faire la même chose avec D. Mais si M = ( 1 0 0 ? 2) alors on a M 3 = D. Posons B = P M P ? 1. Alors B 3 = P M 3 P ? 1 = P D P ? 1 = A. Remarquons que l'énoncé de l'exercice ne demande pas de calculer B ...

Baccalauréat ES — Spécialité APMEP

Baccalauréat ES - Spécialité

Tapuscript : B. Colombel

dernière mise à jour : 3 février 2018Code source, remarques, erreurs : maurice72 at ymail.com

N oLieu et dateGraphesGraphes probabi- listesMatrices

1Métropole 20 juin 2014×

2Antilles - Guyane 19 juin 2014×

3Asie 19 juin 2014××

4Polynésie 13 juin 2014×

5Centres Étrangers 12 juin 2014×

6Amérique du Nord 30 mai 2014×

7Liban 27 mai 2014×

8Pondichéry 7 avril 2014××

Session 2013

9Nouvelle-Calédonie 7 mars 2014×

10Amérique du Sud 21 novembre 2013××

11Nouvelle-Calédonie 18 novembre 2013×

12Métropole Réunion 13 septembre 2013××

13Antilles Guyane 12 septembre 2013××

14Polynésie 4 septembre 2013××

15Métropole sujet dévoilé juin 2013×

16Métropole 20 juin 2013××

17Asie 19 juin 2013×

18Antilles Guyane 19 juin 2013×

19Centres Étrangers 2013×

20Polynésie 7 juin 2013××

21Amérique du Nord 30 mai 2013×

22Liban 28 mai 2013××

23Pondichery 15 avril 2013××

Baccalauréat ESA. P. M. E. P.1. Métropole 20 juin 2014

Alice participe à une compétition de tir à l"arc; elle effectue plusieurs lancers de flèches.

Lorsqu"elle atteint la cible à un lancer, la probabilité qu"elle atteigne la cible au lancer suivant est égale à0,9.

Lorsqu"elle a manqué la cible à un lancer, Alice se déconcentre et la probabilité qu"elle

atteigne la cible au lancer suivant est égale à0,4. On suppose qu"au premier lancer, elle a autant de chances d"atteindre la cible que de la manquer. Pour tout nombre entier naturelnstrictement positif, on note : a nla probabilité qu"Alice atteigne la cible aun-ième lancer; b nla probabilité qu"Alice manque la cible aun-ième lancer; P n=? a nbn? la matrice ligne traduisant l"état probabiliste aun-ième lancer. 1. (a) Représen terla situation par un graphe p robabilistede sommets AetB (Areprésentant l"état " Alice atteint la cible » etBl"état " Alice manque sa cible »). (b) Indiquer la matrice de transition Massociée à ce graphe. On prendra les som- metsAetBdans l"ordre(A,B). (c)

Justifier que P1=?

0,5 0,5?

etP2=?

0,65 0,35?

2. (a) Mon trerque, p ourtout n ombree ntiernstrictement positif,an+1= 0,9an+

0,4bn.

(b) En déduire que, p ourtout n ombreen tiernstrictement positif,an+1= 0,5an+ 0,4. 3. (a) Compléter l"algorithme fourni en annexe de façon à ce qu "ilaffic hel "étatpro- babiliste aun-ième lancer. (b) Déterminer l"affic hagede cet algorithme p ourn= 5. 4. (a) On considère la suite (un)définie pour tout nombre entier naturelnstrictement positif par :un=an-0,8. Montrer que la suite(un)est une suite géométrique dont on précisera la raison et le premier terme. (b) Donner l"expression de unen fonction den, puis en déduire que pour tout nombre entier naturelnstrictement positif,an= 0,8-0,3×0,5n-1. (c) À long terme, que p eut-onp enserde la probabilité qu "Aliceatteigne la cible ? (d) P arquelle autre métho deaurait-on pu trouv erle résultat précéden t?

AnnexeEntrées

SaisirnTraitement

aprend la valeur 0,5bprend la valeur 0,5Pouriallant de 2 ànaprend la valeur...×a+... bprend la valeur1-aFin Pour

Sortie

Affichera,bBaccalauréat série ESSpécialité2/34 Baccalauréat ESA. P. M. E. P.2. Antilles - Guyane 19 juin 2014 Les services commerciaux d"une grande surface de produits alimentaires ont défini un profil de client qui a été appelé " consommateur bio ».

Sur la base d"observations réalisées les années précédentes, il a été constaté que :

90% des clients " consommateurs bio » maintenaient cette pratique l"année suivante;

15% des clients n"ayant pas le profil de " consommateurs bio » entraient dans la

catégorie " consommateurs bio » l"année suivante.

On suppose que cette évolution se poursuit d"une année à l"autre à partir de 2013, année

au cours de laquelle il a été constaté que 20% des clients ont le profil " consommateur bio ». Par un tirage aléatoire effectué tous les ans, on choisit un client de cette grande surface.

Pour tout nombre entier naturelnon note :

b nla probabilité que le client choisi lors de l"année2013 +nsoit un " consommateur bio »; c nla probabilité que le client choisi lors de l"année2013+nne soit pas un " consom- mateur bio »; P nla matrice ligne? b ncn? donnant l"état probabiliste lors de l"année2013 +n. 1. (a) Représen terla situation par un graphe probabiliste de sommets BetCoùB correspond à l"état " consommateur bio ». (b) Donner P0l"état probabiliste en 2013 et la matriceMde transition correspon- dant à ce graphe, les sommetsBetCétant classés dans cet ordre. (c)

On donne la matrice M2:

M

2=?0,825 0,175

0,2625 0,7375?

En précisant la méthode de calcul, déterminer la probabilité que le client choisi en 2015 soit un " consommateur bio ». (d)

Déterminer l"état stab le?

b c? du graphe probabiliste. 2. Le directeur du sup ermarchéaffirme que, dans un futur pro che,plus de la moitié de sa clientèle aura le profil de " consommateur bio ». (a) Recopier et compléter l"algorithme suiv antqui doit p ermettrede d éterminerle

nombre minimal d"années pour que l"affirmation du directeur soit vérifiée.Variables :Nest un nombre entier naturel non nulBun nombre réelTraitement :Affecter àNla valeur 0Affecter àBla valeur 0,2Affecter àCla valeur 0,8Tant que···affecter àBla valeur0,9×B+ 0,15×Caffecter àCla valeur1-Baffecter àNla valeurN+ 1Fin Tant que

Sortie :Afficher···(b)Déterminer le nom breminimal d"années rec herchéen expliquan tla démar che.

Baccalauréat série ESSpécialité3/34

Baccalauréat ESA. P. M. E. P.3. Asie 19 juin 2014

Partie A

Une entreprise E commande chaque semaine ses fournitures auprès de deux fournisseurs

A et H.

Les constats faits les premières semaines conduisent à modéliser l"évolution du choix du fournisseur pour les commandes d"une semaine à l"autre par un graphe probabiliste de sommets A et H où : •A désigne l"état : " La commande est passée auprès du fournisseur A »; •H désigne l"état : " La commande est passée auprès du fournisseur H ». La matrice de transitionMde ce graphe, en considérant les sommets dans l"ordre A et H est :

M=?0,95 0,05

0,1 0,9?

1. Dessiner le graphe probabiliste asso ciéà la matrice M. 2. Donner la signification du n ombre0,95dans la matriceM.

Pour tout entier natureln, on note :

-anla probabilité de l"événement : " la semainen, l"entreprise E commande ses fournitures auprès du fournisseur A »; -hnla probabilité de l"événement : " la semainen, l"entreprise E commande ses fournitures auprès du fournisseur H »; -Pnla matrice? a nhn? correspondant à l"état probabiliste pour la semainen. 3.

V érifierque la matrice ligne P=?23

13 correspond à l"état stable du système.

En donner une interprétation.

4.

On donne P0=?

0,4 0,6?

et on rappelle quePk=P0×Mk, pourkentier naturel. Déterminer la semaine où, pour la première fois, la probabilité que l"entreprise E commande ses fournitures auprès du fournisseur A dépasse la probabilité qu"elle les commande auprès du fournisseur H.

Partie B

Le directeur de l"entreprise E rend visite à ses fournisseurs, il se rend du fournisseur A au fournisseur H et souhaite effectuer le moins de kilomètres possible. Son assistant dresse le graphe suivant qui schématise les trajets, en kilomètres, entre les six villes de la région, notées B; C; D; E; F et G et les deux sites, A et H.AB C DE F G H49 11231
11382
107
70
65
95
150
114
158
175

100Déterminer l"itinéraire le plus court reliant les deux sites A et H et indiquer le nombre de

kilomètres à effectuer. Justifier la réponse.Baccalauréat série ESSpécialité4/34

Baccalauréat ESA. P. M. E. P.4. Polynésie 13 juin 2014

Partie A

Le graphe ci-dessous représente, dans un aéroport donné, toutes les voies empruntées par les avions au roulage. Ces voies, sur lesquelles circulent les avions avant ou après atterrissage, sont appeléestaxiways.

Les arêtes du graphe représentent les voies de circulation (les " taxiways ») et les sommets

du graphe sont les intersections.A B C D E F T1.Déterminer le nom brede v oiesde circulation au total. 2. Afin que l"aér oportsoit déneigé le plus rapidemen tp ossible,est-il p ossiblede plani- fier un parcours pour que les chasse-neige passent par toutes les voies sans emprun- ter plusieurs fois la même route? Justifier la réponse et donner un tel parcours.

Partie B

Dans le graphe ci-dessous, on a indiqué le sens de circulation pour les avions dans les différentes voies ainsi que le temps de parcours pour chacune en minute(s). 0,5 4 0,5 0,5 0,5 3 2 1 0,5 1,5 4 3 4 A B C D E F T1.(a) Écrire la matrice Massociée à ce graphe (ranger les sommets dans l"ordre alphabétique). (b) Citer tous les c heminsde longueur 3 reli antAàT. 2. L"a vionqui a atter rie sten b outde piste en Aet doit se rendre le plus rapidement possible au terminal situé au pointT.

Déterminer l"itinéraire le plus rapide et en donner la durée.Baccalauréat série ESSpécialité5/34

Baccalauréat ESA. P. M. E. P.5. Centres Étrangers 12 juin 2014

Partie A : Étude d"un graphe

on considère le grapheGci-dessous.A B CD E FGH I1.(a) Déterminer en justifian tsi le graphe Gest complet. (b) Déterminer en justifian tsi le graphe Gest connexe. 2. (a) Donner le degré de c hacundes sommets du graphe G. (b) Déterminer en justifian tsi le graphe Gadmet un cycle eulérien ou une chaîne eulérienne. 3. (a) Donner la matrice Massociée au grapheG(les sommets seront rangés dans l"ordre alphabétique). (b)

On don neM2=(

((((((((((((((4 2 2 1 2 2 2 1 1

2 5 1 3 1 1 1 2 0

2 1 4 2 1 1 1 2 2

1 3 2 4 1 1 0 1 0

2 1 1 1 2 2 0 0 0

2 1 1 1 2 2 0 0 0

2 1 1 0 0 0 3 2 1

1 2 2 1 0 0 2 4 0

1 0 2 0 0 0 1 1 2)

Montrer, par le calcul, que le coefficient de la septième ligne et quatrième colonne de la matriceM3est égal à 3.

Partie B : Applications

Dans cette partie, on pourra justifier les réponses en s"aidant de la partie A.

On donne ci-dessous le plan simplifié d"un lycée.Baccalauréat série ESSpécialité6/34

Baccalauréat ESA. P. M. E. P.1.Le graphe Gdonné en partie A modélise cette situation. Recopier et compléter le tableau suivant :Sommet du grapheGABCDEFGHI

Lieu correspondant dans le lycée

2. Un élèv ea cours de mathématiques dans le b âtiment1. À la fin du cours, i ldoit rejoindre la salle des professeurs pour un rendez vous avec ses parents. Déterminer le nombre de chemins en trois étapes permettant à l"élève de rejoindre ses parents puis indiquer quels sont ces chemins. 3. Le lycée organise une journée p ortes-ouvertes. (a) Déterminer, e njustifian t,s "ilest p ossiblede visiter le lycée en emprun tantune seule fois chaque passage entre les différents lieux. (b) Sur les arêtes du graphe Gsont indiqués les temps de parcours exprimés en secondes entre deux endroits du lycée.A B CD E FGH I 25
20 40350
60
25
90
35
50
80
80
6070
45

30Déterminer, à l"aide de l"algorithme de Dijkstra, le chemin permettant de relier

le sommetGau sommetDen un temps minimal.

Déterminer ce temps minimal, exprimé en secondes.Baccalauréat série ESSpécialité7/34

Baccalauréat ESA. P. M. E. P.6. Amérique du Nord 30 mai 2014 Lors d"une campagne électorale, un homme politique doit effectuer une tournée dans les villesA,B,C,D,E,F,GetH, en utilisant le réseau autoroutier. Le grapheGci-dessous,

représente les différentes villes de la tournée et les tronçons d"autoroute reliant ces villes

(une ville est représentée par un sommet, un tronçon d"autoroute par une arête) :AB C D EFG

HPartie A

1.

Déterminer, en ju stifiant,si le graphe Gest :

(a) complet ; (b) connexe. 2. (a) Justifier qu"il est p ossibled"organiser la tournée en pas santau moins une fois par chaque ville, tout en empruntant une fois et une seule chaque tronçon d"au- toroute. (b)

Citer un tra jetde ce t ype.

3. On app elleMla matrice d"adjacence associée au grapheG(les sommets étant pris dans l"ordre alphabétique). (a)

Déterminer la matrice M.

(b)

On don nela matrice

M 3=( ((((((((((((0 5 3 5 1 1 4 1

5 2 7 2 8 3 3 5

3 7 6 4 9 3 9 10

5 2 4 0 9 2 3 8

1 8 9 9 4 4 10 4

1 3 3 2 4 2 6 6

4 3 9 3 10 6 6 9

1 5 10 8 4 6 9 4)

Déterminer, en justifiant, le nombre de chemins de longueur 3 reliantEàH.

Préciser ces chemins.

Partie B

Des contraintes d"organisation obligent cet homme politique à se rendre dans la villeF après la villeA. Le grapheGest complété ci-dessous par les longueurs en kilomètre de chaque tronçon d"autoroute.Baccalauréat série ESSpécialité8/34

Baccalauréat ESA. P. M. E. P.AB

C D EFGquotesdbs_dbs30.pdfusesText_36
[PDF] cours graphes probabilistes

[PDF] le mystère de la chambre jaune questionnaire lecture

[PDF] le mystère de la chambre jaune reponse

[PDF] le mystère de la chambre jaune audio

[PDF] qu'est qu'un diviseur

[PDF] exemple de diviseur

[PDF] qu est ce qu un multiple de 9

[PDF] qu est ce qu un divisible

[PDF] qu'est ce qu'un diviseur de 6

[PDF] trigonaliser une matrice dordre 4

[PDF] trigonaliser une matrice exemple

[PDF] trigonalisation méthode de jordan

[PDF] trigonalisation matrice 3x3

[PDF] qu'est ce qu'internet definition

[PDF] diagonalisation et trigonalisation des endomorphismes