[PDF] SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES





Previous PDF Next PDF



Fiche de synthèse sur les suites Fiche de synthèse sur les suites

Attention on ne peut pas se contenter de calculer quelques termes ! Rappel : Dire qu'une suite (Un) est croissante signifie que pour tout entier n Un+1. Un.



SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES

ET SUITES GEOMETRIQUES. I. Suites arithmétiques. 1) Définition. Exemple : Considérons une suite numérique (un) où la différence entre un terme et son.



Méthode 1 : On étudie le signe de Un+1 – Un

1. SUITES. I Comportement d'une suite numérique. 1°) Sens de variation a) Définition. (Un) est croissante à partir du rang n0 si pour tout n ? n0 Un+1 ? 



Suites 1 Convergence

Calculer unq et unq+1. En déduire que la suite (un) n'a pas de limite. Indication ?. Correction ?. Vidéo ?. [000524]. Exercice 6. Soit Hn = 1+. 1.



Amérique du Nord mai 2019

On pose u0=1 et pour tout entier naturel n un+1=un?ln(1+un) . On admet que la suite de terme général un est bien définie. 1. Calculer une valeur approchée 



LES SUITES

Variations monotonie d'une suite. Définition 1.1.2. Soit (un) une suite. On dit que : a) la suite (un) est croissante si pour tout n ?. : un ? un+1 ;.



Nouvelle Calédonie mars 2019

On considère la suite (un) à valeurs réelles définie par u0=1 et pour tout entier naturel n



Suites

1- Suite des valeurs d'une fonction. Soit f une fonction définie sur [0; +?[. On peut définir une suite (un) par un = f ( 



?un +1+un ?un+1+un

Conjectures : la suite (un) est minorée par 1 majorée par 8



TS. DM1 - Correction Dans ce devoir on sintéresse aux suites (un

Dans ce devoir on s'intéresse aux suites (un) qui vérifient la relation de récurrence : un+2 = un+1 +un. On note E l'ensemble des suites réelles qui 



[PDF] SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES

1) Déterminer la raison et le premier terme de la suite (un) 2) Exprimer un en fonction de n 1) Les termes de la suite sont de la forme u n 



[PDF] Suites 1 Convergence - Exo7 - Exercices de mathématiques

Exercice 4 Soit (un)n?N une suite de R Que pensez-vous des propositions suivantes : • Si (un)n converge vers un réel l alors (u2n)n et (u2n+1)n 



[PDF] Suites - Exo7 - Exercices de mathématiques

Exercice 4 ** Soit (un)n?N une suite arithmétique ne s'annulant pas Montrer que pour tout entier naturel n on a ?n k=0 1 ukuk+1 = n+1 u0un+1



[PDF] Feuille dexercices n°1 : Suites réelles - Arnaud Jobin

Feuille d'exercices n°1 : Suites réelles Suites usuelles Exercice 1 ( ) Pour chacune des suites suivantes définies par récurrence donner une ex-



[PDF] Cours danalyse 1 Licence 1er semestre

Chapitre 1 Les nombres réels et complexes 1 1 Nombres rationnels On désigne par N l'ensemble des entiers naturels N = {0123 }



[PDF] Suites - Licence de mathématiques Lyon 1

Montrer que la suite ( ) ?? est bien définie convergente et déterminer sa limite Allez à : Correction exercice 16 : Exercice 17 : 1 Calculer si cette 



[PDF] Suites numériques

8 nov 2011 · En utilisant le théorème 1 on en déduit que le quotient de deux suites convergentes converge vers le quotient des limites pourvu que la limite 



[PDF] CHAPITRE 1—LES SUITES NUMÉRIQUES

Exemple Soit (un)n? la suite définie pour tout entier naturel n par un = 1+3n Calculer u0 u1 u2 et u10 2 Sens de variation d'une suite Définition



[PDF] Chapitre 1 Suites réelles et complexes

Définition 1 2 1 On dit qu'une suite (un)n?N d'éléments de K converge vers l ? K si : pour tout ? > 



[PDF] Suites et séries de fonctions - Xiffr

n(1 + xn) Exercice 9 [ 00870 ] [Correction] On pose un(x)=e?nx sin(nx) avec x ? R+ (a) Étudier la convergence simple de la suite de fonctions (un) sur 

  • Quand utiliser un 1 un ou un 1 un ?

    MÉTHODE 1. –
    Pour déterminer le sens de variation d'une suite (un), on peut utiliser l'une des règles suivantes : a) On étudie le signe de la différence un+1 ? un. ? Si un+1 ? un est positive, alors la suite (un) est croissante. ? Si un+1 ? un est négative, alors la suite (un) est décroissante.
  • Comment calculer un et un 1 ?

    Un+1 - Un = [5n + 5 + 3] - [5n +3]. Un+1 - Un = [5n + 8] - [5n +3]. Un+1 - Un = 5n + 8 - 5n - 3 Un+1 - Un = 5. La différence Un+1 - Un est un réel ne dépendant pas de n (constant), donc la suite (Un) est arithmétique de raison r=5 et de premier terme U0= 3.
  • Comment calculer V1 et V2 ?

    V1 = V0 – 15%V0 = (1 – 0,15) x V0 = 0,85 x 18 000 = 15 300 € en 2004. V2 = V1 – 15%V1 = (1 – 0,15) x V1 = 0,85 x 15 300 = 13 005 € en 2005. Le montant la valeur de la voiture définit une suite géométrique (Vn) de premier terme V0 = 18000 et de raison q = 0,85. Donc, pour tout entier n, on a Vn +1 = 0,85 x Vn .
  • On considère une suite (un) définie pour tout entier naturel n par un+1=f(un) où f est une fonction donnée. De plus, le premier terme u0 est également connu. Si l'exercice demande de calculer u1, on peut se servir de la relation un+1=f(un) en rempla?nt n par 0.
SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr1SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES I. Suites arithmétiques 1) Définition Exemple : Considérons une suite numérique (un) où la différence entre un terme et son précédent reste constante et égale à 5. Si le premier terme est égal à 3, les premiers termes successifs sont : u0 = 3, u1 = 8, u2 = 13, u3 = 18. Une telle suite est appelée une suite arithmétique de raison 5 et de premier terme 3. La suite est donc définie par : 0

1 3 5 nn u uu

. Définition : Une suite (un) est une suite arithmétique s'il existe un nombre r tel que pour tout entier n, on a : 1nn

uur

. Le nombre r est appelé raison de la suite. Méthode : Démontrer si une suite est arithmétique Vidéo https://youtu.be/YCokWYcBBOk 1) La suite (un) définie par :

u n =7-9n est-elle arithmétique ? 2) La suite (vn) définie par : v n =n 2 +3 est-elle arithmétique ? 1) u n+1 -u n =7-9n+1 -7+9n=7-9n-9-7+9n=-9

. La différence entre un terme et son précédent reste constante et égale à -9. (un) est une suite arithmétique de raison -9. 2)

v n+1 -v n =n+1 2 +3-n 2 -3=n 2 +2n+1+3-n 2 -3=2n+1

. La différence entre un terme et son précédent ne reste pas constante. (vn) n'est pas une suite arithmétique. Vidéo https://youtu.be/6O0KhPMHvBA

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr2Propriété : (un) est une suite arithmétique de raison r et de premier terme u0. Pour tout entier naturel n, on a :

u n =u 0 +nr

. Démonstration : La suite arithmétique (un) de raison r et de premier terme u0 vérifie la relation

u n+1 =u n +r . En calculant les premiers termes : u 1 =u 0 +r u 2 =u 1 +r=u 0 +r +r=u 0 +2r u 3 =u 2 +r=u 0 +2r +r=u 0 +3r u n =u n-1 +r=u 0 +(n-1)r +r=u 0 +nr

. Méthode : Déterminer la raison et le premier terme d'une suite arithmétique Vidéo https://youtu.be/iEuoMgBblz4 Considérons la suite arithmétique (un) tel que

u 5 =7 et u 9 =19

. 1) Déterminer la raison et le premier terme de la suite (un). 2) Exprimer un en fonction de n. 1) Les termes de la suite sont de la forme

u n =u 0 +nr

Ainsi 50

57uur=+=

et 90

919uur=+=

. On soustrayant membre à membre, on obtient :

5r-9r=7-19

donc r=3 . Comme u 0 +5r=7 , on a : u 0 +5×3=7 et donc : u 0 =-8 . 2) 0n uunr=+ soit 83 n un=-+× ou encore 38 n un=-

2) Variations Propriété : (un) est une suite arithmétique de raison r. - Si r > 0 alors la suite (un) est croissante. - Si r < 0 alors la suite (un) est décroissante. Démonstration :

u n+1 -u n =u n +r-u n =r . - Si r > 0 alors u n+1 -u n >0 et la suite (un) est croissante. - Si r < 0 alors u n+1 -u n <0 et la suite (un) est décroissante. Exemple : Vidéo https://youtu.be/R3sHNwOb02M

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr3La suite arithmétique (un) définie par

u n =5-4n

est décroissante car de raison négative et égale à -4. 3) Représentation graphique Les points de la représentation graphique d'une suite arithmétique sont alignés. Exemple : On a représenté ci-dessous la suite de raison -0,5 et de premier terme 4. RÉSUMÉ (un) une suite arithmétique - de raison r - de premier terme u0. Exemple : r=-0,5

et u 0 =4

Définition

u n+1 =u n +r u n+1 =u n -0,5 La différence entre un terme et son précédent est égale à -0,5. Propriété u n =u 0 +nr u n =4-0,5n Variations Si r > 0 : (un) est croissante. Si r < 0 : (un) est décroissante. r=-0,5<0

La suite (un) est décroissante. Représentation graphique Remarque : Les points de la représentation graphique sont alignés.

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr4II. Suites géométriques 1) Définition Exemple : Considérons une suite numérique (un) où le rapport entre un terme et son précédent reste constant et égale à 2. Si le premier terme est égal à 5, les premiers termes successifs sont : u0 = 5, u1 = 10, u2 = 20, u3 = 40. Une telle suite est appelée une suite géométrique de raison 2 et de premier terme 5. La suite est donc définie par :

u 0 =5 u n+1 =2u n

Vidéo https://youtu.be/WTmdtbQpa0c Définition : Une suite (un) est une suite géométrique s'il existe un nombre q tel que pour tout entier n, on a :

u n+1 =q×u n

. Le nombre q est appelé raison de la suite. Méthode : Démontrer si une suite est géométrique Vidéo https://youtu.be/YPbEHxuMaeQ La suite (un) définie par :

u n =3×5 n est-elle géométrique ? u n+1 u n

3×5

n+1

3×5

n 5 n+1 5 n =5 n+1-n =5

. Le rapport entre un terme et son précédent reste constant et égale à 5. (un) est une suite géométrique de raison 5 et de premier terme

u 0 =3×5 0 =3

. Exemple concret : On place un capital de 500€ sur un compte dont les intérêts annuels s'élèvent à 4%. Chaque année, le capital est multiplié par 1,04. Ce capital suit une progression géométrique de raison 1,04. On a ainsi : u

1 =1,04×500=520 u 2 =1,04×520=540,80 u 3 =1,04×540,80=562,432

De manière générale : u

n+1 =1,04×u n avec u 0 =500 On peut également exprimer un en fonction de n : u n =500×1,04 n

Propriété : (un) est une suite géométrique de raison q et de premier terme u0. Pour tout entier naturel n, on a :

u n =u 0 ×q n

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr5Démonstration : La suite géométrique (un) de raison q et de premier terme u0 vérifie la relation

u n+1 =q×u n . En calculant les premiers termes : u 1 =q×u 0 u 2 =q×u 1 =q×q×u 0 =q 2 ×u 0 u 3 =q×u 2 =q×q 2 ×u 0 =q 3 ×u 0 u n =q×u n-1 =q×q n-1 u 0 =q n ×u 0

. Méthode : Déterminer la raison et le premier terme d'une suite géométrique Vidéo https://youtu.be/wUfleWpRr10 Considérons la suite géométrique (un) tel que

u 4 =8 et u 7 =512

. Déterminer la raison et le premier terme de la suite (un). Les termes de la suite sont de la forme

u n =q n ×u 0 . Ainsi u 4 =q 4 ×u 0 =8 et u 7 =q 7 ×u 0 =512 . Ainsi : u 7 u 4 q 7 ×u 0 q 4 ×u 0 =q 3 et u 7 u 4 512
8 =64 donc q 3 =64

. On utilise la fonction racine troisième de la calculatrice pour trouver le nombre qui élevé au cube donne 64. Ainsi

q=64 3 =4 Comme q 4 ×u 0 =8 , on a : 4 4 ×u 0 =8 et donc : u 0 1 32

. 2) Variations Propriété : (un) est une suite géométrique de raison q et de premier terme non nul u0. Pour

u 0 >0

: - Si q > 1 alors la suite (un) est croissante. - Si 0 < q < 1 alors la suite (un) est décroissante. Pour

u 0 <0

: - Si q > 1 alors la suite (un) est décroissante. - Si 0 < q < 1 alors la suite (un) est croissante. Démonstration dans le cas où u0 > 0 :

u n+1 -u n =q n+1 u 0 -q n u 0 =u 0 q n (q-1) . - Si q > 1 alors u n+1 -u n >0 et la suite (un) est croissante. - Si 0 < q < 1 alors u n+1 -u n <0 et la suite (un) est décroissante.

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr6Exemple : Vidéo https://youtu.be/vLshnJqW-64 La suite géométrique (un) définie par

u n =-4×2 n

est décroissante car le premier terme est négatif et la raison est supérieure à 1. Remarque : Si la raison q est négative alors la suite géométrique n'est pas monotone. RÉSUMÉ (un) une suite géométrique - de raison q - de premier terme u0. Exemple : q=2

et u 0 =-4

Définition

u n+1 =q×u n u n+1 =2×u n Le rapport entre un terme et son précédent est égal à 2. Propriété u n =u 0 ×q n u n =-4×2 n

Variations Pour

u 0 >0 : Si q > 1 : (un) est croissante. Si 0 < q < 1 : (un) est décroissante. Pour u 0 <0 : Si q > 1 : (un) est décroissante. Si 0 < q < 1 : (un) est croissante. u 0 =-4<0 q=2>1

La suite (un) est décroissante. Représentation graphique Remarque : Si q < 0 : la suite géométrique n'est ni croissante ni décroissante.

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr7III. Sommes de termes consécutifs 1) Cas d'une suite arithmétique Propriété : n est un entier naturel non nul alors on a :

1+2+3+...+n=

nn+1 2

Remarque : Il s'agit de la somme des n+1 premiers termes d'une suite arithmétique de raison 1 et de premier terme 1. Démonstration : 1 + 2 + 3 + ... + n-1 + n + n + n-1 + n-2 + ... + 2 + 1 (n+1) + (n+1) + (n+1) + ... + (n+1) + (n+1) = n x (n+1) donc :

2×1+2+3+...+n

=nn+1 et donc :

1+2+3+...+n=

nn+1quotesdbs_dbs29.pdfusesText_35
[PDF] montrer qu'une suite est décroissante

[PDF] un+1/un suite géométrique

[PDF] calcul de pente exercices cm2

[PDF] formule de topographie

[PDF] exercice densité 6e

[PDF] distance point plan formule

[PDF] distance d'une droite ? un plan

[PDF] distance point plan demonstration

[PDF] distance d'un point ? un plan terminale s

[PDF] distance d'un point ? un plan produit vectoriel

[PDF] calculer la distance du point o au plan abc

[PDF] séquence course longue cm1

[PDF] unité d'apprentissage course longue cycle 3

[PDF] séquence course longue cycle 3

[PDF] course en durée lycée