[PDF] LES SUITES Suite géométrique. Dé





Previous PDF Next PDF



SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. 1. SUITES ARITHMETIQUES. ET SUITES GEOMETRIQUES. I. Suites arithmétiques. 1) Définition.



Fiche de synthèse sur les suites Fiche de synthèse sur les suites

Exemple 1 :(Un) est une suite géométrique telle que q = 2 U7 = 5. Calculer U19. On peut utiliser la formule suivante : Un = Up*q(n-p). On obtient ainsi : U19 = 



SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES

Une telle suite est appelée une suite arithmétique de raison 5 et de premier terme 3. La suite est donc définie par : 0. 1. 3. 5 n.



SUITES GEOMETRIQUES

1) Calculer u2 et u3. 2) Quelle est la nature de la suite (un) ? On donnera son premier terme et sa raison. 3) Exprimer un 



LES SUITES

Suite géométrique. Définition 1.1.5. Une suite (un)n? est géométrique s'il existe un réel q indépendant de n tel que pour tout n ?



Chapitre 1 Suites réelles et complexes

Ainsi un et vn convergent et ont même limite puisque (vn ? un) converge vers 0. 10. Page 10. 1.4.3 Exemples. Limite d'une suite géométrique 



Chapitre 3 - Suites arithmétiques et géométriques

On numérote les termes ce qui revient à faire correspondre à des entiers naturels des nombres réels. Rang du terme 1 2 3. 4 n. ? ? ?. ?. ?.



Convergence de suites

Nov 5 2010 Limites des suites géométriques. Soit (un) une suite géométrique de raison q et de premier terme u0 = 0. • si q > 1



SUITES NUMERIQUES

On considère la suite (wn)n?IN définie par w0 = – 2 et wn+1 = 1. 2 wn – 3. Calculer w1 ; w2 ; w3 et w4 . II. Suites arithmétiques et géométriques.



RAPPELS CHAPITRE 4 : SUITES ARITHMÉTIQUES ET SUITES

pour une suite géométrique (m et n entiers naturels). EX 1 : Soit la suite arithmétique (un) dont on connaît deux termes u15 = 5. 4 et u37 =.



[PDF] SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES

Propriété : (un) est une suite arithmétique de raison r et de premier terme u0 Pour tout entier naturel n on a : u n = u 0 + nr Démonstration 



[PDF] SUITES GEOMETRIQUES - maths et tiques

On considère la suite géométrique (un) de raison q = 2 et de premier terme u1 = 5 1) Exprimer un en fonction de n 2) A l'aide de la calculatrice calculer la 



[PDF] Première S - Suites géométriques - Parfenoff org

Elle traduit exactement la définition de suite géométrique En revanche elle est incommode dans le cas où il s'agit de calculer un terme de rang élevé Par 



[PDF] Suites arithmétiques Suites géométriques - AlloSchool

Si la suite (un) est géométrique de premier terme u0 et de raison q pour tout entier naturel n un = u0 + nr un = u0 × qn • Les suites arithmétiques sont 



[PDF] 1 ) suites arithmétiques - Pierre Lux

Plus généralement on montre de la même façon que toute suite un définie par un =an b ( où a?? et b?? ) est une suite arithmétique de raison a et de 



[PDF] Suites - Cours - Lycées Jean Lurçat

Cours de Mathématique 1S2 Enseignant : RAKOTONANDRASANA Daniel 11 Méthode : Démontrer si une suite est géométrique La suite ( )n u définie par : 2 1



[PDF] Suites arithmétiques et suites géométriques - dpernoux

On appelle suite arithmétique une suite de nombres où on passe d'un terme au suivant en ajoutant toujours le même nombre (ce nombre est appelé raison de la 



[PDF] CHAPITRE 1—LES SUITES NUMÉRIQUES

Exemple Soit (un)n? la suite géométrique de premier terme u0 = 5 de raison q = ?2 Calculer u1 u2 et u3 4 2 Formule explicite Proposition Si u est une 



[PDF] Thème 1: Suites (ou progressions) arithmétiques et géométriques

Exercice 1 : Calculer les 5 premiers termes ainsi que le 8e terme des suites proposées puis les représenter graphiquement a) 15?3n ( )n?IN* b) 3



[PDF] SUITES ET SÉRIES GÉOMÉTRIQUES

1 Suites géométriques Définition : Une suite a ? a a a a est un ensemble ordonné de nombres L'indice de chaque terme de la suite indique la 

  • Comment montrer qu'une suite est géométrique avec un 1 ?

    Une suite (un) est géométrique si et seulement si pour tout entier naturel n, un+1=a×un où a est un nombre indépendant de n. Pour démontrer qu'un suite est géométrique, on peut donc montrer qu'elle respecte bien la relation un+1=a×un.
  • Qu'est-ce qu'un +1 ?

    Par exemple, un+1 est le terme de rang n + 1 (celui qui suit un) alors que un +1 est le terme de rang n augmenté de 1.
  • Comment trouver u1 ?

    On considère une suite (un) définie pour tout entier naturel n par un+1=f(un) où f est une fonction donnée. De plus, le premier terme u0 est également connu. Si l'exercice demande de calculer u1, on peut se servir de la relation un+1=f(un) en rempla?nt n par 0.
  • Exemple : Montrons que la suite (Un) définie par Un = 5n + 3 est arithmétique. Un+1 - Un = [5(n + 1) + 3] - [5n +3]. Un+1 - Un = [5n + 5 + 3] - [5n +3].
C

HAPITRE

1

LES SUITES

1.1Généralités sur les suitesDé“nition 1.1.1

Une suite(u

n )est une fonction définie de?dans?.Onnote(u n n?-→u n ?u n est appelé le terme général de la suite(u n ?Attention donc à bien faire la différence entre(u n )(la suite) etu n (un seul terme). ?On pourra noter indifféremment(u n )ou tout simplementu. ?Variations, monotonie d"une suiteDé“nition 1.1.2

Soit(u

n )une suite. On dit que : a)la suite(u n )estcroissantesi pour toutn??:u n ?u n+1 b)la suite(u n )estdécroissantesi pour toutn??:u n ?u n+1 c)la suite(u n )estmonotonesi elle est croissante ou décroissante; d)la suite(u n )estconstantesi pour toutn??:u n+1 =u n ?Il existe des suites qui ne sont ni croissantes, ni décroissantes :u n =(-1) n

?Les premiers termes de la suite n"entrent pas forcément en compte dans la variation d"une suite. Ils

peuvent cependant donner une indication sur la monotonie de la suite.

CHAPITRE11

1 ?Méthodes de détermination du sens de variation d"une suite

MÉTHODE1. ... SENS DE VARIATION DUNE SUITE

Pour déterminer le sens de variation d"une suite(u n ), on peut utiliser l"une des règles suivantes : a)On étudie le signe de la différenceu n+1 -u n ?Siu n+1 -u n est positive, alors la suite(u n )est croissante. ?Siu n+1 -u n est négative, alors la suite(u n )est décroissante. b)Si tous les termes de la suite sont strictement positifs, alors il suffit de comparer le rapportu n+1 u n

à1.

?Siu n+1 u n ?1, alors la suite(u n )est croissante. ?Siu n+1 u n ?1, alors la suite(u n )est décroissante. c)Si la suite(u n )est définie explicitement :u n =f(n), alors il suffit d"étudier les variations de la fonction fsur l"intervalle0;+∞.Lasuite(u n )et la fonctionfont le même sens de variation. d)On utilise un raisonnement par récurrence (voirsection 2).

Il est bien évident que chacune de ces méthodes est adaptée au type de suite à laquelle nous serons

confrontés.

Exemple

Déterminer le sens de variation des suites suivantes en utilisant la règle la mieux adaptée.

a)Pour toutn??,u n =n 2 -n. b)Pour toutn?? ,u n =2 n n. c)Pour toutn?2,u n =2n-1 n+1. a)Pour toutn??, u n+1 -u n =(n+1) 2 -(n+1)-(n 2 -n)=2n?0.

Par conséquent, la suite(u

n )est croissante. b)Ici on étudie le rapportu n+1 u n . Pour toutn?1 u n+1 u n =2 n+1 n+1 2 n n= 2 n+1 n+1×n2 n =2n n+1=n+nn+1?1.

Ainsi, la suite(u

n )est croissante. c)On au n =f(n)oùf(x)=2x-1 x+1.Lafonctionfest dérivable sur0;+∞et pour toutx?0,

2LES SUITES

2

Chapitre 1

f (x)=3 (x+1) 2 >0. La fonctionfest donc strictement croissante sur0;+∞. On déduit que la suite(u n )est aussi strictement croissante. ?Suite arithmétique

Dé“nition 1.1.3

Une suite(u

n n?? est arithmétique s"il existe un réelrindépendant dentel que, pour toutn??, u n+1 =u n +r

Le nombrerest appelé la raison de la suite(u

n

Exemple 1

La suite(u

n )définie par :u 0 =2etu n+1 =u n +3(n??) est arithmétique. Ici la raison estr=3. MÉTHODE2. - DÉMONTRER QU"UNE SUITE EST ARITHMÉTIQUE

Une suite(u

n

)est arithmétique si la différence entre deux termes consécutifs est constante. Cette constante

est alors la raison de la suite.

Ainsi, si pour toutn??,u

n+1 -u n =r, alors la suite(u n )est arithmétique de raisonr.

Exemple

Soit(u

n )la suite définie pour toutn??par :u n =4n-1. Montrer que(u n )est arithmétique.

Pour toutn??:

u n+1 -u n =4(n+1)-1-4n+1=4.

Par conséquent, la suite(u

n )est bien arithmétique de raisonr=4.

Propriété 1.1.4

A)Expression du terme général en fonction den: ?si le premier terme estu 0 ,alors:u n =u 0 +nr; ?si le premier terme estu p (pB)Somme des premiers termes:siSdésigne la somme de termes consécutifs d"une suite arithmétique,

alors :

S=(Nombre de termes)×

1 er terme+dernier terme 2

CHAPITRE13

3

Les suites

?Suite géométrique

Dé“nition 1.1.5

Une suite(u

n n?? est géométrique s"il existe un réelqindépendant dentel que, pour toutn??, u n+1 =q.u n

Exemple 2

a)La suite(u n )définie par :u 0 =2etu n+1 =3u n pour toutn??.

Ici la raison estq=3.

b)La suite(v n )définie par :v 0 =-3etv n+1 =v n

4pour toutn??.

La suite(v

n )est-elle géométrique? MÉTHODE3. - DÉMONTRER QU"UNE SUITE EST GÉOMÉTRIQUE

Pour justifier qu"une suite(u

n )est géométrique, il suffit d"utiliser la définition suivante.

Une suite(u

n )est géométrique si l"on peut écrireu n+1 sous la forme :u n+1 =qu n . Le nombre réelqest alors la raison de la suite géométrique(u n

Exemple

Soit(u

n )la suite définie pour toutn??par :u n =3 2 n .Montrerque(u n )est géométrique. On précisera le premier terme et la raison.

Pour toutn??,

u n+1 =3 2 n+1 =1

2×32

n =1 2u n

Par conséquent, la suite(u

n )est bien géométrique de raisonq=1 2. Une autre méthode (reposant aussi sur la définition) consiste à prouver que le rapportu n+1 u n est constant, mais il faut s"assurer que les termesu n ne s"annulent pas.

4LES SUITES

4

Chapitre 1

Propriété 1.1.6

Si(u n )est une suite géométrique de raisonq: A)Expression du terme général en fonction den: ?si le premier terme estu 0 ,alors:u n =u 0 q n ?si le premier terme estu p (pB)Somme des premiers termes: si

Sdésigne la somme de termes consécutifs d"une suite géométrique de raisonq(q?=1), alors :

S=(1 er terme)×1-q nombre de termes 1-q

1.2Le raisonnement par récurrence

?Introduction et intérêt du raisonnement par récurrence

Exemple

Soit la suite(u

n )définie par : (u nquotesdbs_dbs15.pdfusesText_21
[PDF] calcul de pente exercices cm2

[PDF] formule de topographie

[PDF] exercice densité 6e

[PDF] distance point plan formule

[PDF] distance d'une droite ? un plan

[PDF] distance point plan demonstration

[PDF] distance d'un point ? un plan terminale s

[PDF] distance d'un point ? un plan produit vectoriel

[PDF] calculer la distance du point o au plan abc

[PDF] séquence course longue cm1

[PDF] unité d'apprentissage course longue cycle 3

[PDF] séquence course longue cycle 3

[PDF] course en durée lycée

[PDF] séquence endurance cm1

[PDF] situation d'apprentissage course de durée cycle 3