[PDF] Cours : Groupes On étu- diera ensuite les





Previous PDF Next PDF



1 Définitions 2 Le groupe Z/nZ.

k → e2iπk/n est un isomorphisme de groupes de Z/nZ dans µn. Si G est un groupe cyclique d'ordre n alors il existe y ∈ G tel que G = {e y



1 Le groupe Z/nZ 2 Lanneau Z/nZ

Théor`eme 4. `A isomorphisme pr`es Z/nZ est le seul groupe cyclique d'ordre n. Proposition 5. Pour tout d diviseur de 



120 – Anneaux Z/nZ. Applications. 1 Le groupe additif (Z/nZ+) 2

(Un groupe cyclique non-fini est isomorphe `a Z). Proposition 6. ¯k est générateur dans (Z/nZ+) ⇐⇒ pgcd(k



Chapitre 1 - Groupes monogènes. Groupes cycliques. Exemples

3. Pour tout entier naturel non nul n ((Z/nZ)∗.



Propriétés de Z/nZ

Un tel ensemble s'appelle un groupe une structure mathématique très importante. Un autre exemple de groupe est Z/nZ tout en- tier



Anneaux Z/nZ. Applications.

Cette première partie va définir Z/nZ en tant que groupe anneau et corps. Elle va notamment présenter en quoi ces structures se trouvent au coeur des groupes 





Leçon 120 : Anneaux Z/nZ. Applications. 1 Groupes cycliques 2

Elle est compa- tible avec l'addition et la multiplication dans Z ce qui munit l'ensemble quotient Z/nZ d'une structure d'anneau. 1 Groupes cycliques.



AUTOMORPHISMES DE Z/nZ

Les groupes Aut(Z/nZ) et (Z/nZ)∗ sont isomorphes. Aut(Z/nZ) ≃ (Z/nZ). ∗. En particulier Aut(Z/nZ) est un groupe abélien de cardinal ϕ(n). Démonstration 



Groupes monogènes

Z et Z/nZ sont des groupes monogènes 1 et ¯1 constituant des générateurs évidents. (notons que



1 Définitions 2 Le groupe Z/nZ.

k ? e2i?k/n est un isomorphisme de groupes de Z/nZ dans µn. Si G est un groupe cyclique d'ordre n alors il existe y ? G tel que G = {e y



1 Le groupe Z/nZ 2 Lanneau Z/nZ

Théor`eme 4. `A isomorphisme pr`es Z/nZ est le seul groupe cyclique d'ordre n. Proposition 5. Pour tout d diviseur de 



Condition de cyclicité des (Z/nZ)

Prérequis. On admet le fait suivant : si p est premier alors le groupe (Z/pZ). × est cyclique. Théorème. Pour n ? 1



Propriétés de Z/nZ

Un autre exemple de groupe est Z/nZ tout en- tier muni de son addition. Nous prouverons plus loin que dans certains cas ces groupes ont en fait une structure 



The Structure of (Z/nZ)

Apr 6 2018 If (Z/nZ)× is cyclic with generator a + nZ





AUTOMORPHISMES DE Z/nZ

s est un générateur du groupe (Z/nZ+);. • s appartient au groupe (Z/nZ)? des éléments inversibles pour la multiplication de l'anneau. Z/nZ. Démonstration.



120 – Anneaux Z/nZ. Applications. 1 Le groupe additif (Z/nZ+) 2

Définition 1. Les sous-groupes de (Z +) sont de la forme nZ



Chapitre 1 - Groupes monogènes. Groupes cycliques. Exemples

3. Pour tout entier naturel non nul n ((Z/nZ)?.



Cours : Groupes

On étu- diera ensuite les applications entre deux groupes : les morphismes de groupes. Finalement nous détaillerons deux groupes importants : le groupe Z/nZ et 



Cosets Lagrange’s theorem and normal subgroups

Our goal will be to generalize the construction of the groupZ=nZ Theidea there was to start with the groupZand the subgroupnZ=hni where 2N and to construct a set Z=nZwhich then turned out to be a group(under addition) as well (There are two binary operations + and onZ but Zis just a group under addition



Contents Introduction Preliminary results

THE MULTIPLICATIVE GROUP (Z/nZ)? Contents 1 Introduction 1 2 Preliminary results 1 3 Main result 2 4 Some number theoretic consequences : 3 1 Introduction Let n be a positive integer and consider Z/nZ = {01 n?1} If a and b are elements of Z/nZ we de?ned a·b = ab



Pro?nite Groups - Universiteit Leiden

(Z/nZ) the product topology This product is compact as a result of the theorem of Tychono? (the product of compact topological spaces is itself compact); the restriction Zb is therefore itself compact as Zb is closed in Q n (Z/nZ) The ring homomorphism Z ? Q n (Z/nZ) which takes every element to its reduction modulo n realizes Zb as the



The Structure of (Z=nZ - Trinity University

The Structure of (Z=nZ) R C Daileda April 6 2018 The group-theoretic structure of (Z=nZ) is well-known We have seen that if N = p n1 1 p r r with p i distinct primes and n i 2N then the ring isomorphism ˆof the Chinese remainder theorem provides a multiplication preserving bijection (Z=nZ) !(Z=pn 1 1 Z) (Z=pnr r Z)



Cyclic groups and elementary number theory II

(Z=nZ) is the set of all a2Z=nZ such that there exists an x2Z=nZ with ax= 1 i e ais an invertible element in the binary structure (Z=nZ;) Proposition 1 5 ((Z=nZ);) is an abelian group Proof The product of two invertible elements is invertible so that multipli-cation is a well-de ned operation on (Z=nZ) It is associative and commu-



Feuille d’exercices n 3 - Université Sorbonne Paris Nord

C - Le groupe Z/nZ 5 - Deux groupes d’ordre 4 non-isomorphes Montrer que les groupes Z/4Z et (Z/2Z) × (Z/2Z) sont tous les deux commutatifs et d’ordre 4 mais ne sont pas isomorphes 6 - Sous-groupes de Z/54Z D´eterminer les sous-groupes de Z/54Z Pour chaque sous-groupe en donner les g´en´erateurs



Searches related to groupe z/nz PDF

Nous allons introduire dans ce chapitre la notion de groupe puis celle de sous-groupe On étu-diera ensuite les applications entre deux groupes : les morphismes de groupes Finalement nous détaillerons deux groupes importants : le groupe Z/nZ et le groupe des permutations Sn 1 Groupe 1 1 Dé?nition Dé?nition 1

GroupesExo7

?????ç?????? ?? ?? ??????Z/nZ

MotivationÉvariste Galois a tout juste vingt ans lorsqu"il meurt dans un duel. Il restera pourtant comme l"un

des plus grands mathématiciens de son temps pour avoir introduit la notion de groupe, alors qu"il avait à peine dix-sept ans.

Vous savez résoudre les équations de degré 2 du typeax2ÅbxÅcAE0. Les solutions s"expriment en

fonction dea,b,cet de la fonction racine carréep. Pour les équations de degré 3,ax3Åbx2ÅcxÅdAE

0, il existe aussi des formules. Par exemple une solution dex3Å3xÅ1AE0 estx0AE3qp5¡12

¡3qp5Å12.

De telles formules existent aussi pour les équations de degré 4.

Un préoccupation majeure au début duXIXesiècle était de savoir s"il existait des formules simi-

laires pour les équations de degré 5 ou plus. La réponse fut apportée par Galois et Abel : non il

n"existe pas en général une telle formule. Galois parvient même à dire pour quels polynômes c"est

possible et pour lesquels ce ne l"est pas. Il introduit pour sa démonstration la notion de groupe.

Les groupes sont à la base d"autres notions mathématiques comme les anneaux, les corps, les

matrices, les espaces vectoriels,... Mais vous les retrouvez aussi en arithmétique, en géométrie, en

cryptographie! Nous allons introduire dans ce chapitre la notion de groupe, puis celle de sous-groupe. On étu- diera ensuite les applications entre deux groupes : les morphismes de groupes. Finalement nous détaillerons deux groupes importants : le groupeZ/nZet le groupe des permutationsSn. 1.

Groupe

1.1.

Définition Définition 1

Ungroupe(G,?) est un ensembleGauquel est associé une opération?(laloi de composi- tion) vérifiant les quatre propriétés suivantes : 1. pour tout x,y2G,x?y2G(?est uneloi de composition interne) 2. pour tout x,y,z2G, (x?y)?zAEx?(y?z) (la loi estassociative) 3. il existe e2Gtel que8x2G,x?eAExete?xAEx(eest l"élément neutre)1 2

4.pour toutx2Gil existex02Gtel quex?x0AEx0?xAEe(x0est l"inversedexet est

notéx¡1)Si de plus l"opération vérifie pour tousx,y2G,x?yAEy?x, on dit queGest un groupecommutatif(ouabélien).Remarque L"élément neutreeest unique. En effet sie0vérifie aussi le point (3), alors on ae0?eAEe (careest élément neutre) ete0?eAEe0(care0aussi). DonceAEe0. Remarquez aussi que l"inverse de l"élément neutre est lui-même. S"il y a plusieurs groupes, on pourra noter eGpour l"élément neutre du groupeG. Un élémentx2Gne possède qu"un seul inverse. En effet six0etx00vérifient tous les deux le point ( 4 ) alors on ax?x00AEedoncx0?(x?x00)AEx0?e. Par l"associativité (2) et la propriété de l"élément neutre ( 3 ) alors (x0?x)?x00AEx0. Maisx0?xAEedonce?x00AEx0et ainsix00AEx0.1.2.Exemples Voici des ensembles et des opérations bien connus qui ont une structure de groupe. propriétés : 1. 2. nombres réels. 3.

1 est l"élément neutre pour la multiplication, en effet 1£xAExetx£1AEx, ceci quelque soit

4. L"inverse dexest doncx¡1AE1x. Notons au passage que nous avions exclu 0 de notre groupe, car il n"a pas d"inverse. 5. Enfin x£yAEy£x, c"est la commutativité de la multiplication des réels. -(Z,Å) est un groupe commutatif. IciÅest l"addition habituelle. 1.

Si x,y2ZalorsxÅy2Z.

2. P ourtout x,y,z2ZalorsxÅ(yÅz)AE(xÅy)Åz. 3.

0 est l"élément neutre pour l"addition, en effet 0 ÅxAExetxÅ0AEx, ceci quelque soitx2Z.

4.

L"inverse d"un élémentx2Zestx0AE¡xcarxÅ(¡x)AE0 est bien l"élément neutre 0. Quand

la loi de groupe estÅl"inverse s"appelle plus couramment l"opposé. 5. Enfin xÅyAEyÅx, et donc (Z,Å) est un groupe commutatif. -(Q,Å), (R,Å), (C,Å) sont des groupes commutatifs. -SoitRl"ensemble des rotations du plan dont le centre est à l"origineO. 3

OµR

µAlors pour deux rotationsRµetRµ0la composéeRµ±Rµ0est encore une rotation de centre

l"origine et d"angleµÅµ0. Ici±est la composition. Ainsi (R,±) forme un groupe (qui est même

commutatif). Pour cette loi l"élément neutre est la rotation d"angle 0 : c"est l"identité du plan.

L"inverse d"une rotation d"angleµest la rotation d"angle¡µ.

SiIdésigne l"ensemble des isométries du plan (ce sont les translations, rotations, réflexions

et leurs composées) alors (I,±) est un groupe. Ce groupe n"est pas un groupe commutatif. En effet, identifions le plan àR2et soit par exempleRla rotation de centreOAE(0,0) et d"angle ¼2etTla translation de vecteur (1,0). Alors les isométriesT±RetR±Tsont des applications distinctes. Par exemple les images du pointAAE(1,1) par ces applications sont distinctes : T±R(1,1)AET(¡1,1)AE(0,1) alors queR±T(1,1)AER(2,1)AE(¡1,2).OA

¼2R(A)T±R(A)OAT(A)R±T(A)¼2

Voici deux exemples quine sont pasdes groupes :

qui n"est pas un entier.

(N,Å) n"est pas un groupe. En effet l"inverse de 3 (pour l"additionÅ) devrait être¡3 mais

¡3ÝN.

Nous étudierons dans les sections

4 et 5 deux autres groupes très importants : les groupes cyc liques (Z/nZ,Å) et les groupes de permutations (Sn,±). 1.3.

Puissance

Revenons à un groupe (G,?). Pourx2Gnous noteronsx?xparx2etx?x?xparx3. Plus généralement nous noterons : -xnAEx?x?¢¢¢?x|{z} nfois, -x0AEe, -x¡nAEx¡1?¢¢¢?x¡1|{z} nfois. Rappelez-vous quex¡1désigne l"inverse dexdans le groupe.

4Les règles de calcul sont les mêmes que pour les puissances des nombres réels. Pourx,y2Get

m,n2Znous avons : -xm?xnAExmÅn, -(xm)nAExmn, -(x?y)¡1AEy¡1?x¡1, attention à l"ordre!

Si (G,?) estcommutatifalors (x?y)nAExn?yn.

1.4.

Exemple des matrices 2£2

Unematrice2£2 est un tableau de 4 nombres (pour nous des réels) notée ainsi : a b c d!

Nous allons définir l"opérationproduitnoté£de deux matricesMAE¡a bc d¢etM0AE¡a0b0

c

0d0¢:

M£M0AEÃ

a b c d! a0b0 c 0d0!

AEÃ

aa0Åbc0ab0Åbd0 ca

0Ådc0cb0Ådd0!

Voici comment présenter les calculs, on placeMà gauche,M0au dessus de ce qui va être le résultat.

On calcule un par un, chacun des termes deM£M0.

Pour le premier terme on prend la colonne située au dessus et la ligne située à gauche : on effectue

les produitsa£a0etb£c0qu"on additionne pour obtenir le premier terme du résultat. Même chose

avec le second terme : on prend la colonne située au dessus, la ligne située à gauche, on fait les

produit, on additionne :ab0Åbd0. Idem pour les deux autres termes. Ãa 0b0c 0d0! ab c d aa

0Åbc0ab0Åbd0

ca

0Ådc0cb0Ådd0!£

Par exemple siMAE¡1 10¡1¢etM0AE¡1 02 1¢alors voici comment poser les calculs (M£M0à gauche,

M0£Mà droite)Ã

1 0 2 1! 1 1

0¡1! Ã

3 1

¡2¡1!Ã

1 1

0¡1!

1 0

2 1! Ã

1 1 2 1!

alorsM£M0AE¡3 1¡2¡1¢etM0£MAE¡1 12 1¢. Remarquez qu"en généralM£M06AEM0£M.

Ledéterminantd"une matriceMAE¡a bc d¢est par définition le nombre réel detMAEad¡bc.Proposition 1 L"ensemble des matrices 2£2 ayant un déterminant non nul, muni de la multiplication des matrices£, forme un groupe non-commutatif.Ce groupe est noté (G`2,£). Nous aurons besoin d"un résultat préliminaire : 5

Lemme 1

det(M£M0)AEdetM¢detM0.Pour la preuve, il suffit de vérifier le calcul :¡aa0Åbc0¢¡cb0Ådd0¢¡¡ab0Åbd0¢¡ca0Ådc0¢AE(ad¡

bc)(a0d0¡b0c0). Revenons à la preuve de la proposition.Démonstration 1. Vérifions la loi de composition interne. SiM,M0sont des matrices 2£2 alorsM£M0aussi. Maintenant siMetM0sont de déterminants non nuls alorsdet(M£M0)AEdetM¢detM0est aussi non nul. Donc siM,M02G`2alorsM£M02G`2. 2. Pour vérifier que la loi est associative, c"est un peu fastidieux. Pour trois matricesM,M0,M00 quelconques il faut montrer (M£M0)£M00AEM£(M0£M00). Faites-le pour vérifier que vous maîtrisez le produit de matrices. 3.

Existence de l"élément neutre. Lamatrice identitéIAE¡1 00 1¢est l"élément neutre pour la multi-

plication des matrices : en effet¡a bc d¢£¡1 00 1¢AE¡a bc d¢et¡1 00 1¢£¡a bc d¢AE¡a bc d¢.

4. Existence de l"inverse. SoitMAE¡a bc d¢une matrice de déterminant non nul alorsM¡1AE

1ad¡bc¡d¡b¡c a¢est l"inverse deM: vérifiez queM£M¡1AEIet queM¡1£MAEI.

5. Enfin nous a vonsdéjà vu que cette mult iplicationn"est pas commutative .Mini-exercices 1. 2. Soitfa,b:R!Rla fonction définie parx7!axÅb. Montrer que l"ensembleFAE{fa,bja2 R 3. (Plus dur) SoitGAE]¡1,1[. Pourx,y2Gon définitx?yAExÅy1Åxy. Montrer que (G,?) forme un groupe en (a) montrant que?est une loi de composition interne :x?y2G; (b) montrant que la loi est associative; (c) montrant que 0 est élément neutre; (d) trouvant l"inverse dex. Soit (G,?) est un groupe quelconque,x,y,zsont des éléments deG. 4.

Montrer que si x?yAEx?zalorsyAEz.

5.

Que vaut

¡x¡1¢¡1?

6.

Si xnAEe, quel est l"inverse dex?

Matrices :

7.

SoientM1AE¡0¡11 0¢,M2AE¡1 21 0¢,M3AE¡1 23 4¢. Vérifier queM1£(M2£M3)AE(M1£M2)£M3.

8. Calculer ( M1£M2)2etM21£M22. (Rappel :M2AEM£M) 9. Calculer les déter minantsdes Miainsi que leur inverse. 10.

Montrer que l"ensemble des matrices 2£2 muni de l"additionÅdéfinie par¡a bc d¢Å¡a0b0

c

0d0¢AE¡aÅa0bÅb0

cÅc0dÅd0¢forme un groupe commutatif. 6 2.

Sous-groupes Montrer qu"un ensemble est un groupe à partir de la définition peut être assez long. Il existe une

autre technique, c"est de montrer qu"un sous-ensemble d"un groupe est lui-même un groupe : c"est la notion de sous-groupe. 2.1.

Définition

Soit (G,?) un groupe.Définition 2

Une partieH½Gest unsous-groupedeGsi :

-e2H, -pour toutx,y2H, on ax?y2H,

-pour toutx2H, on ax¡12H.Notez qu"un sous-groupeHest aussi un groupe (H,?) avec la loi induite par celle deG.

Par exemple six2Halors, pour toutn2Z, nous avonsxn2H.Remarque Un critère pratique et plus rapide pour prouver queHest un sous-groupe deGest : -Hcontient au moins un élément -pour toutx,y2H,x?y¡12H.2.2.Exemples -(Z,Å) est un sous-groupe de (R,Å). -{e}etGsont lessous-groupes triviauxdu groupeG. L"ensembleRdes rotations du plan dont le centre est à l"origine est un sous-groupe du groupe des isométriesI. -L"ensemble des matrices diagonales¡a00d¢aveca6AE0 etd6AE0 est un sous-groupe de (G`2,£). 2.3.

Sous-groupes de ZProposition 2

Les sous-groupes de (Z,Å) sont lesnZ, pourn2Z.L"ensemblenZdésigne l"ensemble des multiples den:

nZAEn k¢njk2Zo

Par exemple :

-2ZAE{...,¡4,¡2,0,Å2,Å4,Å6,...}est l"ensemble des entiers pairs, -7ZAE{...,¡14,¡7,0,Å7,Å14,Å21,...}est l"ensemble des multiples de 7. 7

Démonstration

Fixonsn2Z. L"ensemblenZest un sous-groupe de (Z,Å), en effet : -nZ½Z, -l"élément neutre 0 appartient ànZ, -pourxAEknetyAEk0ndes éléments denZalorsxÅyAE(kÅk0)nest aussi un élément denZ,

-enfin sixAEknest un élément denZalors¡xAE(¡k)nest aussi un élément denZ.Réciproquement soitHun sous-groupe de (Z,Å). SiHAE{0}alorsHAE0Zet c"est fini. SinonHcontient

au moins un élément non-nul et positif (puisque tout élément est accompagné de son opposé) et notons

nAEmin©hÈ0jh2Hª. AlorsnÈ0. Commen2Halors¡n2H, 2nAEnÅn2H, et plus généralement pourk2Zalorskn2H. AinsinZ½H. Nous allons maintenant montrer l"inclusion inverse. Soith2H. Écrivons la division euclidienne : hAEknÅr,aveck,r2Zet 0ÉrÇn. Maish2Hetkn2HdoncrAEh¡kn2H. Nous avons un entierrÊ0 qui est un élément deHetquotesdbs_dbs44.pdfusesText_44
[PDF] calcul des quartiles d une série statistique continue

[PDF] classe de congruence

[PDF] paramètres de dispersion et de position

[PDF] écart type relatif

[PDF] écart absolu moyen

[PDF] les origines de la guerre d'algérie

[PDF] paraphrasing exercises with answers pdf

[PDF] paraphrasing techniques

[PDF] cat devant une paraplegie pdf

[PDF] tétraplégie pdf

[PDF] la paraplegie

[PDF] physiopathologie paraplégie

[PDF] paraplégie niveau lésionnel

[PDF] lésion médullaire cervicale

[PDF] prise en charge paraplégie