[PDF] [PDF] fic00056pdf - Exo7 - Exercices de mathématiques





Previous PDF Next PDF



Exercices de mathématiques - Exo7

Indication pour l'exercice 3 △. Essayer avec X la matrice élémentaire Eij (des zéros partout sauf le coefficient 1 à la i-ème ligne et la j-ème colonne).



Exercices de mathématiques - Exo7

Démontrer que A est diagonalisable et déterminer une matrice D diagonale et une matrice P inversible telles A = PDP−1. 3. Donner en le justifiant mais sans 



Exercices de mathématiques - Exo7

Déterminer la matrice de f dans cette base S. Correction ▽. Vidéo □. [001093]. Exercice 10. Trouver toutes les matrices de 



Exercices de mathématiques - Exo7

7. Permuter les lignes et les colonnes pour faire apparaître une matrice triangulaire par blocs. Indication pour l'exercice 5 △. Développer par rapport à 





[PDF] Matrices - Exo7 - Cours de mathématiques

D'après les règles de calcul dans (α + β)ai j est égal à αai j + βai j qui est le terme général de la matrice αA+ βA. Mini-exercices. 1. Soient A = −7 2. 0 



Exercices de mathématiques - Exo7

Déterminer les valeurs propres de M. 2. Montrer que M est diagonalisable. 3. Déterminer une base de vecteurs propres et P la matrice de passage. 4 



Exercices de mathématiques - Exo7

Le but de cette feuille d'exercices est d'apprendre les opérations sur les matrices : somme produit de matrices



Exercices de mathématiques - Exo7

Gauss en inversant la matrice des coefficients



Exercices de mathématiques - Exo7

matrice de ϕ dans la base {e1e2



Exercices de mathématiques - Exo7

Exo7. Calculs sur les matrices. Corrections d'Arnaud Bodin. 1 Opérations sur les matrices. Exercice 1 Exercice 7 M antisymétrique ? I +M est inversible.



Matrices

Mini-exercices. 1. Si possible calculer l'inverse des matrices : 3 1. 7 2 2 ?3. ?5 4 





Exercices de mathématiques - Exo7

Exo7. Matrice d'une application linéaire. Corrections d'Arnaud Bodin. Exercice 1. Soit R2 muni de la base canonique S = (ij).



Exercices de mathématiques - Exo7

Démontrer que A est diagonalisable et déterminer une matrice D diagonale et une matrice P inversible telles A = PDP?1. 3. Donner en le justifiant mais sans 



Exercices de mathématiques - Exo7

Exo7. Tous les exercices. Table des matières. 1 100.01 Logique. 13. 2 100.02 Ensemble Exercice 842 Inversion de la matrice (1/(ai ?bj)).



Exercices de mathématiques - Exo7

Montrer que A et B n'ont pas de valeurs propres communes si et seulement si la matrice ?A(B) est inversible. Correction ?. [005678]. Exercice 29 **. Soit f un 



Exercices de mathématiques - Exo7

Déterminer les valeurs propres de M. 2. Montrer que M est diagonalisable. 3. Déterminer une base de vecteurs propres et P la matrice de passage. 4 



Cours de mathématiques - Exo7

La décomposition de Dunford : écrire une matrice comme la somme d'une matrice diagonali- N est nilpotente et ?N = N? (c'est un bon exercice de le.



Exercices de mathématiques - Exo7

Exercice 1. 1. Résoudre de quatre manières différentes le système suivant (par substitution par la méthode du pivot de Gauss



[PDF] Calculs sur les matrices - Exo7 - Exercices de mathématiques

Exercice 7 M antisymétrique ? I +M est inversible Soit M ? Mn(R) antisymétrique 1 Montrer que I +M est inversible (si (I +M)X = 0 calculer t(MX)(MX))



[PDF] Matrices - Exo7 - Exercices de mathématiques

Montrer que u est un automorphisme de R3 et déterminer u?1 2 Déterminer une base (e1e2e3) de R3 telle que u(e1) = e1 u(e2) = e1 +e2 et u(e3) = e2 +e3



[PDF] Matrice dune application linéaire - Exo7

Exercice 2 Soient trois vecteurs e1e2e3 formant une base de R3 On note ? l'application linéaire définie par ?(e1) = e3 ?(e2) = ?e1 +e2 +e3 et 



[PDF] Calcul matriciel - Exo7 - Exercices de mathématiques

Le but de cette feuille d'exercices est d'apprendre les opérations sur les matrices : somme produit de matrices transposée puissances d'une matrice 



[PDF] fic00054pdf - Exo7 - Exercices de mathématiques

Exercice 8 Soit A une matrice carrée d'ordre n On suppose que A est inversible et que ? ? R est une valeur propre de A 1 Démontrer que ? = 0



[PDF] Matrices - Exo7 - Cours de mathématiques

Définition 1 • Une matrice A est un tableau rectangulaire d'éléments de • Elle est dite de taille n × p si le tableau possède n lignes et p colonnes



[PDF] fic00056pdf - Exo7 - Exercices de mathématiques

Exercice 5 Soit A la matrice suivante A = (1 1 2 1 ) 1 Calculer le polynôme caractéristique et déterminer les valeurs propres de A



[PDF] Calculs de déterminants - Exo7 - Exercices de mathématiques

Calculer les déterminants des matrices suivantes : Exercice 7 Déterminant de Vandermonde La règle de Sarrus ne s'applique qu'aux matrices 3×3



[PDF] ficallpdf - Exo7

Exercice 5 Compléter les pointillés par le connecteur logique qui s'impose : ? ? ? 1 x ? R x2 = 4 x = 2 ; 2 z ? C z = z 



[PDF] Exercices Corrigés Matrices Exercice 1 – Considérons les matrices

Exercice 12 – Soit A et B deux matrices carrées de même ordre on suppose que la matrice AB est inversible d'inverse la matrice C Montrer alors que B est 

  • Comment faire le calcul de matrice ?

    Imaginons que l'on note C la matrice A x B : C = A x B. Le coefficient ci,j de la matrice C sera calculé en multipliant le ième ligne de la matrice de gauche avec la jème colonne de la matrice de droite. On multiplie tout simplement terme à terme chaque coefficient de la ligne et de la colonne.
  • Où trouver les corrigés sur Maths PDF ?

    Maths-pdf.fr est un site web qui propose une large gamme de documents PDF gratuits et téléchargeables consacrés aux mathématiques. Le site propose des fiches de cours, des exercices, des corrigés, des annales et des livres de mathématiques pour les élèves de tous les niveaux, de l'école primaire au lycée en France.
  • Comment déterminer une matrice dans une base canonique ?

    Trouver la matrice de f dans la base canonique pour l'espace de départ et la base b pour l'espace de arrivée. Solution : V(x, y, z) ? R3, (x, y, z) = c1(1,2,0) + c2(0,1,-1) + c3(0,1,1) ? c1 = x, c2 = y - 2x - z 2 ,c3 = y - 2x + z 2 .
  • Définition 1.
    Une matrice A est un tableau rectangulaire d'éléments de . Elle est dite de taille n × p si le tableau poss? n lignes et p colonnes. Les nombres du tableau sont appelés les coefficients de A. Le coefficient situé à la i-ème ligne et à la j-ème colonne est noté ai,j.

Enoncés et corrections : Sandra Delaunay

Exo7

Sujets de l"année 2006-2007

1 Devoir à la maison

Exercice 1Soita2R, notonsAla matrice suivante

A=0 1 a1+a

On définit une suite(un)n2N, par la donnée deu0etu1et la relation de récurrence suivante, pourn2N

u n+2= (1+a)un+1aun 1. Pour quelles v aleursde ala matriceAest-elle diagonalisable ? 2.

Lorsque Aest diagonalisable, calculerAnpourn2N.

3. On suppose Adiagonalisable. On noteUnle vecteurUn=un u n+1 , exprimerUn+1en fonction deUnet deA, puisUnen fonction deU0et deA.

SoitAla matrice deM3(R)suivante :

A=0 @0 1 0 4 4 0

2 1 21

A 1.

La matrice Aest-elle diagonalisable ?

2. Calculer (A2I3)2, puis(A2I3)npour toutn2N. En déduireAn. Soitfl"endomorphisme deR4dont la matrice dans la base canonique est A=0 B

B@833 1

6 3 21

26 7 102

0 0 0 21

C CA: 1. Démontrer que 1 et 2 sont des v aleurspropres de f. 2.

Déterminer les v ecteurspropres de f.

3. Soit ~uun vecteur propre defpour la valeur propre 2. Trouver des vecteurs~vet~wtels que f(~v) =2~v+~uetf(~w) =2~w+~v: 1

4.Soit ~eun vecteur propre defpour la valeur propre 1. Démontrer que(~e;~u;~v;~w)est une base deR4.

Donner la matrice defdans cette base.

5.

La matrice Aest-elle diagonalisable ?

Exercice 4SoitAla matrice suivante

A=0 @3 01 2 4 2

1 0 31

A 1. Déterminer et f actoriserle polynôme caractéristique de A. 2.

Démontrer que Aest diagonalisable et déterminer une matriceDdiagonale et une matricePinversible

tellesA=PDP1. 3. Donner en le justifiant, mais sans calcul, le polynôme minimal de A. 4.

Calculer Anpourn2N.

SoitAla matrice suivante

A=1 1 2 1 1. Calculer le polynôme caractéristique et déterminer les v aleurspropres de A. 2. On note l1>l2les valeurs propres deA,E1etE2les sous-espaces propres associés. Déterminer une

base(~e1;~e2)deR2telle que~e12E1,~e22E2, les deux vecteurs ayant des coordonnées de la forme(1;y).

3.

Soit ~xun vecteur deR2, on note(a;b)ses coordonnées dans la base(~e1;~e2). Démontrer que, pourn2N,

on a A n~x=aln1~e1+bln2~e2 4.

Notons An~x=an

b n dans la base canonique deR2. Exprimeranetbnen fonction dea,b,l1etl2. En déduire que, sia6=0, la suitebna ntend versp2 quandntend vers+¥. 5.

Expliquer ,sans calcul, comment obtenir à partir des questions précédentes une approximation de

p2 par une suite de nombres rationnels. SoitP(X)un polynôme deC[X], soitAune matrice deMn(C). On noteBla matrice :B=P(A)2Mn(C). 1. Démontrer que si ~xest un vecteur propre deAde valeur proprel, alors~xest un vecteur propre deBde valeur propreP(l). 2

2.Le b utde cette question est de démontrer que les v aleurspropres de Bsont toutes de la formeP(l), avec

lvaleur propre deA. Soitm2C, on décompose le polynômeP(X)men produit de facteurs de degré 1 :

P(X)m=a(Xa1)(Xar):

(a)

Démontrer que

det(BmIn) =andet(Aa1In)det(AarIn): (b) En déduire que si mest valeur propre deB, alors il existe une valeur propreldeAtelle que m=P(l). 3. On note SAl"ensemble des valeurs propres deA, démontrer que S

B=fP(l)=l2SAg:

4. Soient l1;:::;lrles valeurs propres deAet soitQ(X)le polynôme :

Q(X) = (Xl1)(Xlr);

on noteCla matriceC=Q(A). (a)

Démontrer que SC=f0g.

(b) En déduire que le polynôme caractéristique de Cest(1)nXnet queCn=0.

Exercice 7SoitAla matrice

A=0 @11 0 1 01

1 0 21

A etfl"endomorphisme deR3associé. 1. F actoriserle polynôme caractéristique de A. 2. Déterminer les sous-espaces propres et caractéristiques de A. 3. Démontrer qu"il e xisteune base de R3dans laquelle la matrice defest B=0 @1 1 0 0 1 1

0 0 11

A et trouver une matricePinversible telle queA=PBP1. 4. Ecrire la décomposition de Dunford de B(justifier). 5.

Pour t2R, calculer exptB.

6. Donner les solutions des systèmes dif férentielsY0=BYetX0=AX. 3

1.On note (~e1;~e2;~e3)la base canonique deR3. SoitAla matrice

A=0 @1 0 0 0 2 0

0 0 31

A Donner sans calcul les valeurs propres deAet une base de vecteurs propres. 2. On cherche à déterminer ,s"il en e xiste,les matrices Btelles que expB=A. (a)

Montrer que si A=expB, alorsAB=BA.

(b) En déduire que la base (~e1;~e2;~e3)est une base de vecteurs propres de B. (c) Déterminer toutes les matrices B2M3(R)telles que expB=A. Justifier. 3.

Soit la matrice C,

C=0 @0 1 0 0 0 1

0 0 01

A Montrer qu"il n"existe pas de matriceD2M3(R)telle queC=expD. 4. Calculer le polynôme caractéristique et le polynôme minimal de C. 5. Supposons qu"il e xisteune matrice E2M3(R)telle queE2=C. NotonsQE(X)son polynôme minimal etQC(X)le polynôme minimal deC. (a)

Montrer que QE(X)diviseQC(X2).

(b)

En déduire que E3=0 et queC2=0.

(c) Déduire de ce qui précède qu"il n"e xistepas de matrice Etelle queE2=C. 6. Soient FetGdes matrices deM3(R)telles queF=expG. Démontrer que pour toutn2N, il existe une matriceHtelle queHn=F.

Exercice 9Soitm2R, etAla matrice

A=0 @1+m1+m1 mm1 m m1 01 A 1. F actoriserle polynôme caractéristique de Aet montrer que les valeurs propres deAsont1 et 1. 2.

Pour quelles v aleursde mla matrice est-elle diagonalisable ? (justifier). Déterminer suivant les valeurs

demle polynôme minimal deA(justifier). 1. Donner unexempledematricedansM2(R), diagonalisablesurCmaisnondiagonalisablesurR(justifier). 2. Donner un e xemplede matrice dans M2(R)non diagonalisable, ni surC, ni surR(justifier). 4

SoitAla matrice suivante :

A=0 1 1 0 1.

Diagonaliser la matrice A.

2.

Exprimer les solutions du système dif férentielX0=AXdans une base de vecteurs propres et tracer ses

trajectoires.

SoitAla matrice

A=0 @3 2 4 1 31 2131
A etfl"endomorphisme deR3associé. 1. F actoriserle polynôme caractéristique de A. 2. Déterminer les sous-espaces propres et caractéristiques de A. 3. Démontrer qu"il e xisteune base de R3dans laquelle la matrice defest B=0 @1 0 0 0 2 1

0 0 21

A et trouver une matricePinversible telle queA=PBP1. 4. Ecrire la décomposition de Dunford de B(justifier). 5.

Calculer e xpB.

Correction del"exer cice1 NSoita2R, notonsAla matrice suivante A=0 1 a1+a

On définit une suite(un)n2N, par la donnée deu0etu1et la relation de récurrence suivante, pourn2N

u n+2= (1+a)un+1aun

1.Pour quelles valeurs de a la matrice A est-elle diagonalisable ?

Calculons le polynôme caractéristiquePA(X):

P

A(X) =X1

a1+aX =X(1+aX)+a=X2(1+a)X+a: La matriceAest diagonalisable surRsi le polynômePAadmet deux racines distinctes dansR. En effet,

siPAadmet une racine doubleretAdiagonalisable, alors l"endomorphisme de matriceAest égal àrIdE,

ce qui n"est pas le cas. Calculons donc le discriminant du polynôme caractéristique.

D= (1+a)24a=1+a2+2a4a=1+a22a= (1a)2:

Ainsi la matriceAest diagonalisable pour touta6=1.

2.Lorsque A est diagonalisable, calculons Anpour n2N.

LorsqueAest diagonalisable, il existe une matrice inversiblePet une matrice diagonaleDtelles que A=PDP1, ainsi pour toutn2N, on aAn=PDnP1. Déterminons les matricesPetD. Pour cela calculons les deux valeurs propres deA, ce sont les racines du polynômePA, on a donc l

1=1+a+1a2

=1 etl2=1+a1+a2 =a: Déterminons maintenant des vecteurs propres associés aux valeurs propres 1 eta. On cherche des vecteurs~e1et~e2tels queA~e1=~e1etA~e2=a~e2. 0 1 a1+a x y =x y ()y=x et 0 1 a1+a x y =ax y ()y=ax ainsi on peut choisir~e1= (1;1)et~e2= (1;a). On a alors P=1 1 1a ;D=1 0 0a ;P1=1a1 a1 1 1

D"où, pour toutn2N,

A n=PDnP1=P1 0 0anquotesdbs_dbs4.pdfusesText_7
[PDF] habitude alimentaire definition

[PDF] guide de bonnes pratiques d'hygiène en pâtisserie

[PDF] propriété d archimède exercices

[PDF] partie entière inégalité

[PDF] espace numérique éducation

[PDF] portail numérique éducation

[PDF] partie entière d'un nombre négatif

[PDF] manuel numérique nathan

[PDF] partie entière d'un nombre décimal

[PDF] pne

[PDF] hachette enseignant

[PDF] fonction partie entière cours pdf

[PDF] correction livre passerelle philosophie

[PDF] passerelle philosophie terminale pdf

[PDF] manuel philosophie passerelles pdf