[PDF] Cours de mathématiques - Exo7





Previous PDF Next PDF



Exercices de mathématiques - Exo7

Indication pour l'exercice 3 △. Essayer avec X la matrice élémentaire Eij (des zéros partout sauf le coefficient 1 à la i-ème ligne et la j-ème colonne).



Exercices de mathématiques - Exo7

Démontrer que A est diagonalisable et déterminer une matrice D diagonale et une matrice P inversible telles A = PDP−1. 3. Donner en le justifiant mais sans 



Exercices de mathématiques - Exo7

Déterminer la matrice de f dans cette base S. Correction ▽. Vidéo □. [001093]. Exercice 10. Trouver toutes les matrices de 



Exercices de mathématiques - Exo7

7. Permuter les lignes et les colonnes pour faire apparaître une matrice triangulaire par blocs. Indication pour l'exercice 5 △. Développer par rapport à 





[PDF] Matrices - Exo7 - Cours de mathématiques

D'après les règles de calcul dans (α + β)ai j est égal à αai j + βai j qui est le terme général de la matrice αA+ βA. Mini-exercices. 1. Soient A = −7 2. 0 



Exercices de mathématiques - Exo7

Déterminer les valeurs propres de M. 2. Montrer que M est diagonalisable. 3. Déterminer une base de vecteurs propres et P la matrice de passage. 4 



Exercices de mathématiques - Exo7

Le but de cette feuille d'exercices est d'apprendre les opérations sur les matrices : somme produit de matrices



Exercices de mathématiques - Exo7

Gauss en inversant la matrice des coefficients



Exercices de mathématiques - Exo7

matrice de ϕ dans la base {e1e2



Exercices de mathématiques - Exo7

Exo7. Calculs sur les matrices. Corrections d'Arnaud Bodin. 1 Opérations sur les matrices. Exercice 1 Exercice 7 M antisymétrique ? I +M est inversible.



Matrices

Mini-exercices. 1. Si possible calculer l'inverse des matrices : 3 1. 7 2 2 ?3. ?5 4 





Exercices de mathématiques - Exo7

Exo7. Matrice d'une application linéaire. Corrections d'Arnaud Bodin. Exercice 1. Soit R2 muni de la base canonique S = (ij).



Exercices de mathématiques - Exo7

Démontrer que A est diagonalisable et déterminer une matrice D diagonale et une matrice P inversible telles A = PDP?1. 3. Donner en le justifiant mais sans 



Exercices de mathématiques - Exo7

Exo7. Tous les exercices. Table des matières. 1 100.01 Logique. 13. 2 100.02 Ensemble Exercice 842 Inversion de la matrice (1/(ai ?bj)).



Exercices de mathématiques - Exo7

Montrer que A et B n'ont pas de valeurs propres communes si et seulement si la matrice ?A(B) est inversible. Correction ?. [005678]. Exercice 29 **. Soit f un 



Exercices de mathématiques - Exo7

Déterminer les valeurs propres de M. 2. Montrer que M est diagonalisable. 3. Déterminer une base de vecteurs propres et P la matrice de passage. 4 



Cours de mathématiques - Exo7

La décomposition de Dunford : écrire une matrice comme la somme d'une matrice diagonali- N est nilpotente et ?N = N? (c'est un bon exercice de le.



Exercices de mathématiques - Exo7

Exercice 1. 1. Résoudre de quatre manières différentes le système suivant (par substitution par la méthode du pivot de Gauss



[PDF] Calculs sur les matrices - Exo7 - Exercices de mathématiques

Exercice 7 M antisymétrique ? I +M est inversible Soit M ? Mn(R) antisymétrique 1 Montrer que I +M est inversible (si (I +M)X = 0 calculer t(MX)(MX))



[PDF] Matrices - Exo7 - Exercices de mathématiques

Montrer que u est un automorphisme de R3 et déterminer u?1 2 Déterminer une base (e1e2e3) de R3 telle que u(e1) = e1 u(e2) = e1 +e2 et u(e3) = e2 +e3



[PDF] Matrice dune application linéaire - Exo7

Exercice 2 Soient trois vecteurs e1e2e3 formant une base de R3 On note ? l'application linéaire définie par ?(e1) = e3 ?(e2) = ?e1 +e2 +e3 et 



[PDF] Calcul matriciel - Exo7 - Exercices de mathématiques

Le but de cette feuille d'exercices est d'apprendre les opérations sur les matrices : somme produit de matrices transposée puissances d'une matrice 



[PDF] fic00054pdf - Exo7 - Exercices de mathématiques

Exercice 8 Soit A une matrice carrée d'ordre n On suppose que A est inversible et que ? ? R est une valeur propre de A 1 Démontrer que ? = 0



[PDF] Matrices - Exo7 - Cours de mathématiques

Définition 1 • Une matrice A est un tableau rectangulaire d'éléments de • Elle est dite de taille n × p si le tableau possède n lignes et p colonnes



[PDF] fic00056pdf - Exo7 - Exercices de mathématiques

Exercice 5 Soit A la matrice suivante A = (1 1 2 1 ) 1 Calculer le polynôme caractéristique et déterminer les valeurs propres de A



[PDF] Calculs de déterminants - Exo7 - Exercices de mathématiques

Calculer les déterminants des matrices suivantes : Exercice 7 Déterminant de Vandermonde La règle de Sarrus ne s'applique qu'aux matrices 3×3



[PDF] ficallpdf - Exo7

Exercice 5 Compléter les pointillés par le connecteur logique qui s'impose : ? ? ? 1 x ? R x2 = 4 x = 2 ; 2 z ? C z = z 



[PDF] Exercices Corrigés Matrices Exercice 1 – Considérons les matrices

Exercice 12 – Soit A et B deux matrices carrées de même ordre on suppose que la matrice AB est inversible d'inverse la matrice C Montrer alors que B est 

  • Comment faire le calcul de matrice ?

    Imaginons que l'on note C la matrice A x B : C = A x B. Le coefficient ci,j de la matrice C sera calculé en multipliant le ième ligne de la matrice de gauche avec la jème colonne de la matrice de droite. On multiplie tout simplement terme à terme chaque coefficient de la ligne et de la colonne.
  • Où trouver les corrigés sur Maths PDF ?

    Maths-pdf.fr est un site web qui propose une large gamme de documents PDF gratuits et téléchargeables consacrés aux mathématiques. Le site propose des fiches de cours, des exercices, des corrigés, des annales et des livres de mathématiques pour les élèves de tous les niveaux, de l'école primaire au lycée en France.
  • Comment déterminer une matrice dans une base canonique ?

    Trouver la matrice de f dans la base canonique pour l'espace de départ et la base b pour l'espace de arrivée. Solution : V(x, y, z) ? R3, (x, y, z) = c1(1,2,0) + c2(0,1,-1) + c3(0,1,1) ? c1 = x, c2 = y - 2x - z 2 ,c3 = y - 2x + z 2 .
  • Définition 1.
    Une matrice A est un tableau rectangulaire d'éléments de . Elle est dite de taille n × p si le tableau poss? n lignes et p colonnes. Les nombres du tableau sont appelés les coefficients de A. Le coefficient situé à la i-ème ligne et à la j-ème colonne est noté ai,j.

Décomposition de Dunford

et réduction de JordanNous avons vu que les matrices ne sont pas toutes diagonalisables. On peut néanmoins décomposer

certaines d"entre elles, en une forme la plus simple possible. Nous verrons trois décompositions. La trigonalisation : transformer une matrice en une matrice triangulaire. La décomposition de Dunford : écrire une matrice comme la somme d"une matrice diagonali- sable et d"une matrice nilpotente. La réduction de Jordan : transformer une matrice en une matrice diagonale par blocs. Ksera le corpsRouC,EunK-espace vectoriel de dimension finie.

1. Trigonalisation

Nous allons montrer que toute matrice, dont le polynôme caractéristique est scindé, est semblable

à une matrice triangulaire.

1.1. Trigonalisation

On rappelle qu"une matriceA= (ai,j)16i,j6nesttriangulaire supérieuresiai,j=0 dès quei>j: A=0 B BB@a

1,1a1,2a1,n

0a2,2......

.........an1,n

00an,n1

C CCA.

Les coefficients sous la diagonale sont tous nuls. Ceux sur la diagonale ou au-dessus peuvent être

nuls ou pas.Définition 1. Une matriceA2Mn(K)esttrigonalisablesurKs"il existe une matrice inversibleP2Mn(K) inversible telle queP1APsoit triangulaire supérieure. Un endomorphismefdeEesttrigonalisables"il existe une base deEdans laquelle la

matrice defsoit triangulaire supérieure.Bien sûr, une matrice diagonalisable est en particulier trigonalisable.

Théorème 1.

Une matriceA2Mn(K)(resp. un endomorphismef) est trigonalisable surKsi et seulement si son polynôme caractéristiqueA(resp.f) est scindé surK.

DÉCOMPOSITION DEDUNFORD ET RÉDUCTION DEJORDAN1. TRIGONALISATION2On rappelle qu"un polynôme est scindé surKs"il se décompose en produit de facteurs linéaires

dansK[X]. Remarquons que siK=C, par le théorème de d"Alembert-Gauss, on a :Corollaire 1. Toute matrice A2Mn(C)est trigonalisable surC.Ce n"est pas le cas siK=R.

Exemple 1.

SoitA=

01 1 0 2M2 (R). AlorsA(X) =X2+1. Ce polynôme n"est pas scindé surR, doncA n"est pas trigonalisable surR. Si on considère cette même matriceAcomme élément deM2(C), alors elle est trigonalisable (et ici même diagonalisable) surC: il existeP2M2(C)inversible telle queP1APsoit triangulaire supérieure.

1.2. Preuve

Démonstration.

=). Sifest trigonalisable, il existe une base deEdans laquelle la matrice defs"écrit A=0 B BB@a

1,1a1,2a1,n

0a2,2......

.........an1,n

00an,n1

C CCA.

On a alors

f(X) =A(X) =n Y i=1(ai,iX), ce qui prouve quefse décompose en produit de facteurs linéaires dansK[X]. =. La démonstration se fait par récurrence sur la dimensionnde l"espace vectorielE. Sin=1,

il n"y a rien à démontrer. Supposons le résultat vrai pourn1,n>2étant arbitrairement fixé.

Le polynômefayant au moins une racine dansK, notonsl"une d"entre elles etv1un vecteur propre associé. SoitFl"hyperplan supplémentaire de la droiteKv1: on a doncE=Kv1F. On considère alors une base(v1,v2,...,vn)deEavec, pour26i6n,vi2F. La matrice def dans cette base s"écrit 0 B BB@ 0 ..B 01 C CCA oùBest une matrice carrée de taille(n1)(n1). On a f(X) = (X)det(BXIn1) = (X)B(X). Notonsgla restriction defàF: la matrice degdans la base(v2,...,vn)est égale àB. Par hypothèse de récurrence,g(et doncB) est trigonalisable : en effet,f(X) = (X)g(X), et commefest supposé scindé surK,gl"est également. Par conséquent, il existe une base (w2,...,wn)deFdans laquelle la matrice degest triangulaire supérieure. Ainsi, dans la base (v1,w2,...,wn), la matrice defest triangulaire supérieure. DÉCOMPOSITION DEDUNFORD ET RÉDUCTION DEJORDAN1. TRIGONALISATION3

1.3. Exemple

Exemple 2.

Soit A=0 @1 42 0 63

1 4 01

A

2M3(R).Démontrons queAest trigonalisable surRet trouvons une matricePtelle queP1APsoit triangu-

laire supérieure. 1. Commençons par calculer le polynôme caractéristique de A:

A(X) =

1X42 0 6X3 1 4X == (3X)(2X)2 CommeAest scindé surR, la matrice est trigonalisable surR. (Nous verrons plus tard si elle est diagonalisable ou pas.) 2.

Les racines du polynôme caractéristique sont les réels3(avec la multiplicité1), et2(avec la

multiplicité 2). Déterminons les sous-espaces propres associés. SoitE3le sous-espace propre associé à la valeur propre simple3:E3=fv= (x,y,z)2R3j

Av=3vg.

v2E3()Av=3v()8 :x+4y2z=3x

6y3z=3y

x+4y=3z()x=y=z E

3est donc la droite vectorielle engendrée par le vecteurv1= (1,1,1).

SoitE2le sous-espace propre associé à la valeur propre double2:E2=fv= (x,y,z)2R3j

Av=2vg.

v2E2()Av=2v()8 :x+4y2z=2x

6y3z=2y

x+4y=2z()x=z 4y=3z E

2est donc la droite vectorielle engendrée parv2= (4,3,4).

est égale à 2. Par conséquent, on sait que la matriceAne sera pas diagonalisable. Soitv3= (0,0,1). Les vecteurs(v1,v2,v3)forment une base deR3. La matrice de passage (constituée desviécrits en colonne) est P=0 @1 4 0 1 3 0

1 4 11

A etP1=0 @3 4 0 11 0

1 0 11

A On aAv1=3v1etAv2=2v2. Il reste à exprimerAv3dans la base(v1,v2,v3): Av

3=A(0,0,1) = (2,3,0) =2(3v1+v2v3)3(4v1v2) =6v1+v2+2v3.

3. Ainsi, l"endomorphisme qui a pour matriceAdans la base canonique deR3a pour matriceT dans la base(v1,v2,v3), où T=0 @3 06 0 2 1

0 0 21

A DÉCOMPOSITION DEDUNFORD ET RÉDUCTION DEJORDAN2. SOUS-ESPACES CARACTÉRISTIQUES4

On aurait aussi pu calculerTpar la formuleT=P1AP.

4.Note. D"autres choix pourv3sont possibles. Ici, n"importe quel vecteurv0

3complétant(v1,v2)en

une base deR3conviendrait. Par contre, un autre choix conduirait à une matrice triangulaire T0différente (pour la dernière colonne).Mini-exercices. 1. La matriceA=2827128est-elle trigonalisable surR? Si oui, trouverPtelle queP1APsoit triangulaire supérieure. Même question avec :

437 1€71 75 2421 2Š

2. Trouver deux matricesT,T02M3(R)qui soient distinctes, triangulaires supérieures et sem- blables.2. Sous-espaces caractéristiques

2.1. Lemme des noyaux

Commençons par démontrer le lemme suivant :Lemme 1(Lemme des noyaux).

Soitfun endomorphisme deE. SoientPetQdes polynômes deK[X],premiers entre eux. Alors :Ker(PQ)(f) =KerP(f)KerQ(f)Généralisation : soientP1,...,Prdes polynômes deux à deux premiers entre eux. Alors :Ker(P1Pr)(f) =Ker(P1(f))Ker(Pr(f))On a bien sûr des énoncés similaires avec les matrices.

Rappels.

SoientP,Q2K[X]. On dit queP(X)etQ(X)sontpremiers entre euxdansK[X]si les seuls polynômes qui divisent à la foisPetQsont les polynômes constants. En particulier, surC, deux polynômes sont premiers entre eux si et seulement s"ils n"ont pas de racine commune. Le théorème de Bézout s"énonce ainsi :

PetQsont premiers entre eux() 9A,B2K[X]AP+BQ=1.

Démonstration.SoientPetQdeux polynômes premiers entre eux. Alors, d"après le théorème de

Bézout, il existe des polynômesAetBtels queAP+BQ=1. On a donc, pour tout endomorphisme f:

A(f)P(f)+B(f)Q(f) =idE.

Autrement dit, pour toutx2E:

A(f)P(f)(x)+B(f)Q(f)(x) =x.

DÉCOMPOSITION DEDUNFORD ET RÉDUCTION DEJORDAN2. SOUS-ESPACES CARACTÉRISTIQUES5

Montrons que KerP(f)\KerQ(f) =f0g.

Soitx2KerP(f)\KerQ(f). On a

A(f)P(f)(x)|{z}

=0+B(f)Q(f)(x)|{z} =0=x, doncx=0, ce qui prouve KerP(f)\KerQ(f) =f0g. Montrons que Ker(PQ)(f) =KerP(f)+KerQ(f)par double inclusion.

Preuve de K er(PQ)(f)KerP(f)+KerQ(f).

Soitx2Ker(PQ)(f). On a, toujours en raison du théorème de Bézout, x=A(f)P(f)(x)+B(f)Q(f)(x).

Montrons queA(f)P(f)(x)2KerQ(f). En effet :

Q(f)A(f)P(f)(x) =A(f)P(f)Q(f)(x) =A(f)(PQ)(f)(x) =0.On a utilisé que les polynômes d"endomorphisme enfcommutent et que(PQ)(f)(x) =0.

De même,B(f)Q(f)(x)2KerP(f). Ainsi,

x=A(f)P(f)(x)|{z}

2KerQ(f)+B(f)Q(f)(x)|{z}

2KerP(f),

et doncx2KerP(f)+KerQ(f). Preuve de K erP(f)+KerQ(f)Ker(PQ)(f). Soienty2KerP(f)etz2KerQ(f). Alors :

PQ(f)(y+z) =Q(f)P(f)(y)|{z}

=0+P(f)Q(f)(z)|{z} =0=0, et doncy+z2Ker(PQ)(f). Conclusion : Ker(PQ)(f) =KerP(f)KerQ(f).2.2. Sous-espaces caractéristiques Nous avons vu que, lorsquefest diagonalisable, on aE=E1EravecEi=Ker(fiidE)

le sous-espace propre associé à la valeur proprei. Nous allons démontrer que même sifn"est

pas diagonalisable, mais si son polynôme caractéristique est scindé surK, on peut écrire

E=Ker(f1idE)m1Ker(fridE)mr,

oùmiest la multiplicité de la valeur propreicomme racine du polynôme caractéristique def.Définition 2.

Soitfun endomorphisme deE. Soitune valeur propre defet soitmsa multiplicité en tant que racine def. Lesous-espace caractéristiquedefpour la valeur propreestN =Ker(fidE)m. Pourvaleur propre def, on aEN, carKer(fidE)Ker(fidE)kquel que soitk>1.

Exemple 3.

Soit A=0 B

B@2 3 0 0

3 4 0 0

1 1 1 0

951 31

C

CA2M4(R).

DÉCOMPOSITION DEDUNFORD ET RÉDUCTION DEJORDAN2. SOUS-ESPACES CARACTÉRISTIQUES6 Calculons les sous-espaces caractéristiques deA. Pour déterminer ses valeurs propres, on calcule d"abord son polynôme caractéristique :

A(X) =det(AXI4) == (X3)(X1)3

La valeur propre 3 est de multiplicité 1 et la valeur propre 1 est de multiplicité 3.

Sous-espace caractéristique associé à=3.Comme la multiplicité de cette valeur propre est1alors le sous-espace caractéristique est aussi

le sous-espace propre :N3=Ker(A3I4)1=E3. Ainsi,N3=fv2R4j(A3I4)v=0g. Comme

N3=E3est de dimension 1 etv1= (0,0,0,1)2N3, alors

N

3=Rv1.

Sous-espace caractéristique associé à=1.

La multiplicité de cette valeur propre est 3, doncN1=Ker(AI4)3. On a : AI4=0 B

B@3 3 0 0

3 3 0 0

1 1 0 0

951 21

C

CA(AI4)2=0

B

B@0 0 0 0

0 0 0 0

6 6 0 0

5 12 41

C

CA(AI4)3=0

B

B@0 0 0 0

0 0 0 0

0 0 0 0

1644 81

C CAquotesdbs_dbs44.pdfusesText_44
[PDF] habitude alimentaire definition

[PDF] guide de bonnes pratiques d'hygiène en pâtisserie

[PDF] propriété d archimède exercices

[PDF] partie entière inégalité

[PDF] espace numérique éducation

[PDF] portail numérique éducation

[PDF] partie entière d'un nombre négatif

[PDF] manuel numérique nathan

[PDF] partie entière d'un nombre décimal

[PDF] pne

[PDF] hachette enseignant

[PDF] fonction partie entière cours pdf

[PDF] correction livre passerelle philosophie

[PDF] passerelle philosophie terminale pdf

[PDF] manuel philosophie passerelles pdf