[PDF] Arithmétique dans Z Exercice 10. Notons a = 1





Previous PDF Next PDF



Cours darithmétique

Exercice 184* (Bac 2003) Trouver tous les entiers x y et z tels que : x2 + y2 yy ⩾ (z + 1)z+1 > zz+1 + (z + 1)zz = (2z + 1) zz ⩾ 5zz ce qui est tout ...



[PDF] Arithmétique - Exo7 - Cours de mathématiques

Par contre ppcm(6 9) = 18 divise bien 36. Mini-exercices. 1. Calculer les coefficients de Bézout correspondant à pgcd(560



arithmetique-dans-z-resume-de-cours-1.pdf

Page 1. Prof/ATMANI NAJIB. 1. Résumé de Cours D'ARITHMETIQUE. PROF : ATMANI NAJIB. 1BAC SM. A) Divisibilité dans ℤ. 1)a) et deux entiers relatifs tels que 







Chapitre4 : Arithmétique dans Z

Mais afin de conserver la généralité des énoncés



Arithmétique dans Z et dans Z/nZ

Introduction. 2. Ensemble N des entiers positifs. En mathématiques tout le monde connaît l'ensemble N des entiers naturels 0



arithmetique-dans-z-cours-et-exercices-corriges.pdf

Page 1. Prof/ATMANI NAJIB. Année Scolaire 2018-2019 Semestre2. 1. Cours L'ARITHMETIQUE. PROF : ATMANI NAJIB. 1BAC SM BIOF avec Exercices avec solutions. I) LA 



FICHE DE RÉVISION DU BAC

1. Divisibilité dans Z. 2. Congruence. 3. Plus grand commun diviseur. 1. Divisibilité dans Z. Dans tout ce qui suit on se place dans l'ensemble des entiers 



[PDF] livre-algebre-1.pdf - Exo7 - Cours de mathématiques

Arithmétique. 45. 1. Division euclidienne et pgcd ... z ∈ on a



LARITHMETIQUE

Cours L'ARITHMETIQUE. PROF : ATMANI NAJIB. 2BAC SM BIOF. Avec Exercices de 1) Divisibilité dans ℤ. Définition : Soient et deux entiers relatifs tels ...



Cours darithmétique

1Plus nous avons jugé l'exercice difficile plus le nombre d'étoiles est important. 1. Page 2. Liste des abbrévations : AMM. American 







Arithmétique dans Z - Thomas Richez

Arithmétique dans Z. Thomas Richez. Table des matières. 1. Divisibilité. 1. 2. PGCD et PPCM. 3. 3. Théorème de Bezout. 5. 4. Equations diophantiennes.



LARITHMETIQUE

1. Résumé de Cours D'ARITHMETIQUE. PROF : ATMANI NAJIB. 1BAC SM. A) Divisibilité dans ?. 1)a) et deux entiers relatifs tels que ? 0.



Cours : Arithmétique

ARITHMÉTIQUE. 1. DIVISION EUCLIDIENNE ET PGCD. 2. Terminologie : q est le quotient et r est le reste. Nous avons donc l'équivalence : r = 0 si et seulement 



LARITHMETIQUE

10 sept. 2019 Cours L'ARITHMETIQUE. PROF : ATMANI NAJIB. 1BAC SM BIOF avec Exercices avec solutions. I) LA DIVISIBILITE DANS ?. 1) Définition et ...



livre-algebre-1.pdf - Exo7 - Cours de mathématiques

Arithmétique. 45. 1. Division euclidienne et pgcd . Pour tout z ? on a





Chapitre4 : Arithmétique dans Z

Mais afin de conserver la généralité des énoncés



Arithmétique dans Z

Exercice 10. Notons a = 1 111 111 111 et b = 123 456 789. 1. Calculer le quotient et le reste de la division euclidienne de a par b. 2. Calculer p = pgcd(a 



cours-exo7.pdf

a b ? Z et pgcd(a

Arithmétique dans Z Exo7 Arithmétique dansZ1 Divisibilité, division euclidienne

Exercice 1Sachant que l"on a 96842=256375+842, déterminer, sans faire la division, le reste de la division du nombre

96842 par chacun des nombres 256 et 375.

HH???Exercice 2

Montrer que8n2N:

n(n+1)(n+2)(n+3)est divisible par 24; n(n+1)(n+2)(n+3)(n+4)est divisible par 120: H???Exercice 3

Montrer que sinest un entier naturel somme de deux carrés d"entiers alors le reste de la division euclidienne

denpar 4 n"est jamais égal à 3. H???Exercice 4

Démontrer que le nombre 7

n+1 est divisible par 8 sinest impair ; dans le casnpair, donner le reste de sa division par 8. HH???Exercice 5 Trouver le reste de la division par 13 du nombre 100 1000.
HH???Exercice 6 1. Montrer que le reste de la di visioneuclidienne par 8 du carré de tout nombre impair est 1. 2. Montrer de même que tout nombre pair vérifie x2=0(mod 8)oux2=4(mod 8): 3. Soient a;b;ctroisentiersimpairs. Déterminerlerestemodulo8dea2+b2+c2etceluide2(ab+bc+ca): 4. En déduire que ces deux nombres ne sont pas des carrés puis que ab+bc+canon plus. HH???1

2 pgcd, ppcm, algorithme d"Euclide

Exercice 7Calculer le pgcd des nombres suivants :

1.

126, 230.

2.

390, 720, 450.

3.

180, 606, 750.

H???Exercice 8

Déterminer les couples d"entiers naturels de pgcd 18 et de somme 360. De même avec pgcd 18 et produit 6480.

H???Exercice 9

Calculer par l"algorithme d"Euclide : pgcd(18480;9828). En déduire une écriture de 84 comme combinaison

linéaire de 18480 et 9828. H???Exercice 10

Notonsa=1 111 111 111 etb=123 456 789.

1. Calculer le quotient et le reste de la di visioneuclidienne de aparb. 2.

Calculer p=pgcd(a;b).

3. Déterminer deux entiers relatifs uetvtels queau+bv=p. H???Exercice 11

Résoudre dansZ: 1665x+1035y=45:

HH???3 Nombres premiers, nombres premiers entre eux

Exercice 12Combien 15! admet-il de diviseurs ?

HH???Exercice 13

Démontrer que, siaetbsont des entiers premiers entre eux, il en est de même des entiersa+betab.

HH???Exercice 14 Soienta;bdes entiers supérieurs ou égaux à 1. Montrer :

1.(2a1)j(2ab1);

2. 2 p1 premier)ppremier ; 2

3.pgcd (2a1;2b1) =2pgcd(a;b)1.

HH???Exercice 15 Soita2Ntel quean+1 soit premier, montrer que9k2N;n=2k:Que penser de la conjecture :8n2N;22n+1 est premier ? HH???Exercice 16

Soitpun nombre premier.

1.

Montrer que 8i2N;0 C ipest divisible parp: 2.

Montrer par récurence que :

8ppremier;8a2N;on aapaest divisible parp:

HH???Exercice 17 1.

Montrer par récurrence que 8n2N;8k>1 on a :

2

2n+k1=

22n1
k1Õ i=0(22n+i+1): 2. On pose Fn=22n+1. Montrer que pourm6=n,FnetFmsont premiers entre eux. 3. En déduire qu"il y a une infinité de nombres premiers. HH???Exercice 18 SoitXl"ensemble des nombres premiers de la forme 4k+3 aveck2N. 1.

Montrer que Xest non vide.

2. Montrer que le produit de nombres de la forme 4 k+1 est encore de cette forme. 3. On suppose que Xest fini et on l"écrit alorsX=fp1;:::;png. Soita=4p1p2:::pn1. Montrer par l"absurde queaadmet un diviseur premier de la forme 4k+3. 4. Montrer que ceci est impossible et donc que Xest infini. H???3

Indication pourl"exer cice1 NAttention le reste d"une division euclidienne est plus petit que le quotient !

Indication pour

l"exer cice

4 NUtiliser les modulos (ici modulo 8), un entier est divisible par 8 si et seulement si il est équivalent à 0 modulo

8. Ici vous pouvez commencer par calculer 7

n(mod 8).Indication pourl"exer cice5 NIl faut travailler modulo 13, tout d"abord réduire 100 modulo 13. Se souvenir que siab(mod 13)alors

a kbk(mod 13). Enfin calculer ce que cela donne pour les exposantsk=1;2;3;:::en essayant de trouver une règle générale.Indication pourl"exer cice6 N1.Écrire n=2p+1. 2. Écrire n=2pet discuter selon quepest pair ou impair. 3.

Utiliser la première question.

4. P arl"absurde supposer que cela s"écri vecomme un carré, par e xemplea2+b2+c2=n2puis discuter

selon quenest pair ou impair.Indication pourl"exer cice11 NCommencer par simplifier l"équation ! Ensuite trouver une solution particulière(x0;y0)à l"aide de l"algorithme

d"Euclide par exemple. Ensuite trouver un expression pour une solution générale.Indication pourl"exer cice12 NIl ne faut surtout pas chercher à calculer 15!=123415, mais profiter du fait qu"il est déjà

"presque" factorisé.Indication pourl"exer cice13 NRaisonner par l"absurde et utiliser le lemme de Gauss.

Indication pour

l"exer cice

14 NPour 1. utiliser l"égalité

x b1= (x1)(xb1++x+1): Pour 2. raisonner par contraposition et utiliser la question 1. La question 3. est difficile ! Supposera>b. Commencer par montrer que pgcd(2a1;2b1) =pgcd(2a 2 b;2b1) =pgcd(2ab1;2b1). Cela vour permettra de comparer l"agorithme d"Euclide pour le calcul de

pgcd(a;b)avec l"algorithme d"Euclide pour le calcul de pgcd(2a1;2b1).Indication pourl"exer cice15 NRaisonner par contraposition (ou par l"absurde) : supposer quenn"est pas de la forme 2k, alorsnadmet un

facteur irréductiblep>2. Utiliser aussixp+1= (x+1)(1x+x2x3+:::+xp1)avecxbien choisi.Indication pourl"exer cice16 N4

1.Écrire

C ip=p(p1)(p2):::(p(i+1))i! et utiliser le lemme de Gauss ou le lemme d"Euclide. 2.

Raisonner a vecles modulos, c"est-à-dire prouv erapa(modp).Indication pourl"exer cice17 N1.Il f autêtre très soigneux : nest fixé une fois pour toute, la récurrence se fait surk>1.

2.

Utiliser la question précédente a vecm=n+k.

3. P arl"absurde, supposer qu"il y a seulement Nnombres premiers, considérerN+1 nombres du typeFi.

Appliquer le "principe du tiroir" :si vous avez N+1chaussettes rangées dans N tiroirs alors il existe

(au moins) un tiroir contenant (plus de) deux chaussettes.5

Correction del"exer cice1 NLa seule chose à voir est que pour une division euclidienne le reste doit être plus petit que le quotient. Donc les

divisions euclidiennes s"écrivent : 96842=256378+74 et 96842=258375+92.Correction del"exer cice2 NIl suffit de constater que pour 4 nombres consécutifs il y a nécessairement : un multiple de 2, un multiple de

3, un multiple de 4 (distinct du mutliple de 2). Donc le produit de 4 nombres consécutifs est divisible par

234=24.Correction del"exer cice3 NEcriren=p2+q2et étudier le reste de la division euclidienne denpar 4 en distinguant les différents cas de

parité depetq.Correction del"exer cice4 NRaisonnons modulo 8 :

7 1(mod 8):

Donc 7 n+1(1)n+1(mod 8):

Le reste de la division euclidienne de 7

n+1 par 8 est donc(1)n+1 donc Sinest impair alors 7n+1 est

divisible par 8. Et sinest pair 7n+1 n"est pas divisible par 8.Correction del"exer cice5 NIl sagit de calculer 100

1000modulo 13. Tout d"abord 1009(mod 13)donc 100100091000(mod 13). Or

9

2813(mod 13), 9392:93:91(mod 13), Or 9493:99(mod 13), 9594:99:93

(mod 13). Donc 10010009100093:333+1(93)333:91333:99(mod 13).Correction del"exer cice6 N1.Soit nun nombre impair, alors il s"écritn=2p+1 avecp2N. Maintenantn2= (2p+1)2=4p2+4p+

1=4p(p+1)+1. Doncn21(mod 8).

2. Si nest pair alors il existep2Ntel quen=2p. Etn2=4p2. Sipest pair alorsp2est pair et donc n

2=4p2est divisible par 8, doncn20(mod 8). Sipest impair alorsp2est impair et doncn2=4p2

est divisible par 4 mais pas par 8, doncn24(mod 8). 3. Comme aest impair alors d"après la première questiona21(mod 8), et de mêmec21(mod 8), c

21(mod 8). Donca2+b2+c21+1+13(mod 8). Pour l"autre reste, écrivonsa=2p+1 et

b=2q+1,c=2r+1, alors 2ab=2(2p+1)(2q+1) =8pq+4(p+q)+2. Alors 2(ab+bc+ca) =

8pq+8qr+8pr+8(p+q+r)+6, donc 2(ab+bc+ca)6(mod 8).

4.quotesdbs_dbs2.pdfusesText_3

[PDF] arithmétique dans z cours exo7

[PDF] arizona cardinals 87

[PDF] arizona charitable organization registration

[PDF] arizona charitable organizations

[PDF] arizona charitable tax credit list 2020

[PDF] arizona civics test flashcards

[PDF] arizona coin buy list

[PDF] arizona court of appeals forms

[PDF] arizona court of appeals rules

[PDF] arizona dashboard

[PDF] arizona foster charities

[PDF] arizona non profit organizations list

[PDF] arizona private school tax credit 2019

[PDF] arizona qcfo

[PDF] arizona qualifying contributions