[PDF] FONCTION DERIVÉE FONCTION DERIVÉE. I. Dé





Previous PDF Next PDF



Premier exercice

Soit f la fonction définie sur IR par. 2 2x f(x) x e. -. = et ( )C sa courbe représentative dans un repère orthonormé ( O;i j). . 1) a- Calculer. )x( 



IL Band / Sektions-Vorträge

If f (x) is not congruent to an algebraic square mod p that is



DÉRIVATION

Exemple : On considère la fonction trinôme f définie sur R par f (x) = x2 + 3x ?1. Page 2. Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.



FONCTION DERIVÉE

FONCTION DERIVÉE. I. Dérivées des fonctions usuelles. Exemple : Soit la fonction f définie sur R par f (x) = x2 . Calculons le nombre dérivé de la fonction 



f(x)= 5x ? 3x +2 f (x)= 2×5x ? 3

3x +2 f '(x)= 2×5x ? 3. Définition : Soit f une fonction polynôme du second degré définie sur ? par f(x) = ax2 +bx + c . On appelle fonction dérivée de f 



Polynôme du second degré

Soit f une fonction définie sur R par f (x) = x2 +x ?2. 1. Calculer f (1). 2. Déterminer la forme canonique de f . 3. Dresser le tableau de variations de 



f(x)= 2x ? 3x +5x ?1 f (x)= 3×2x ?2× 3x +5

3x. 2. +5x ?1 f '(x)= 3×2x. 2. ?2× 3x +5. Définition : Soit f une fonction polynôme du troisième degré définie sur ? par f(x) = ax3 +bx2 + cx + d .



FONCTIONS POLYNOMES DU SECOND DEGRE

Exercice 9. Soit f la fonction définie sur ? par f (x) = 3x2 ?3x ? 2. 1) À l'aide de la calculatrice tracer dans un repère la représentation graphique de la 



Résumé de cours et méthodes 1 Nombre dérivé - Fonction dérivée

Etant donné f est une fonction définie sur un intervalle I contenant le réel a f est dérivable en a si Exemple : Soit f définie sur R par f(x) = x2.



TRIGONOMÉTRIE (II) CORRECTION DES EXERCICES

Par conséquent la fonction f est une fonction périodique de période 2?. Exercice 4 : Soit g une fonction définie sur R par g(x) = ?2 cos(2x)+1.



[PDF] LES FONCTIONS DE REFERENCE - maths et tiques

est une fonction linéaire Exemples : La fonction f définie sur ? par ( ) 6 f x x = ? + est une fonction affine La fonction g définie sur ? par 2



[PDF] FONCTION DERIVÉE - maths et tiques

FONCTION DERIVÉE I Dérivées des fonctions usuelles Exemple : Soit la fonction f définie sur R par f (x) = x2 Calculons le nombre dérivé de la fonction 



[PDF] Corrigé du TD no 11

La fonction f est continue dérivable sur R et sa dérivée f (x)=3x2 + 2 est strictement positive sur R Par conséquent f est strictement croissante sur R donc 



[PDF] Chapitre 3 Dérivabilité des fonctions réelles

– une fonction affine f : x ?? ax + b est partout dérivable et f (x0) = a pour tout x0 Voici deux exemples bien connus Exemples a) Soit n ? 1 un entier 



[PDF] domaine de définition Exercice 3

Donner le domaine de définition ainsi que la forme de la fonction f g g f f f et g g pour les fonctions f et g définies de la façon suivante : (a) f(x)=2x2 x 



[PDF] Feuille 9 Limites et continuité des fonctions

n 2 Z Exercice 4 Soit f : R ! R une fonction périodique qui admet une limite en +1 Que R définie par f(x) = x2 sin(?/x) si x 6= 0 et f(0) = 0



[PDF] [PDF] EXERCICES ET PROBLEMES - AlloSchool

Soit ƒ la fonction numérique définie sur R par: f(x)= 2x+1+Inx I et soit sa courbe représentative dans un repère orthonormé(0;i;]) 1) Calculer: lim f(x) 



[PDF] Dérivation : exercices - Xm1 Math

Soit f la fonction définie sur R? par f(x) = ?x2 +2x?1 x On note C sa courbe représentative dans un repère orthonormé 1) Déterminer les abscisses des 



[PDF] Injection surjection bijection - Exo7 - Exercices de mathématiques

Soient f : R ? R et g : R ? R telles que f(x) = 3x+1 et g(x) = x2 ?1 Soit la fonction g : Z ? Z définie par g (m) = m?1 alors g ?g(n) = n (pour 



Exercices corrigés -Extrema des fonctions de plusieurs variables

Déterminer les extrema locaux des fonctions $f:\mathbb{R}^2 \to \mathbb{R}$ suivantes : $f(xy) = x^2 + xy + y^2 - 3x - 6y$; $f(xy) = x^2 + 2y^2 - 2xy - 2y 

:

1YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frFONCTION DERIVÉE I. Dérivées des fonctions usuelles Exemple : Soit la fonction f définie sur

par f(x)=x 2 . Calculons le nombre dérivé de la fonction f en un nombre réel quelconque a. Pour h≠0 f(a+h)-f(a) h a+h 2 -a 2 h a 2 +2ah+h 2 -a 2 h =2a+h Or : lim h→0 f(a+h)-f(a) h =lim h→0

2a+h=2a

Pour tout nombre a, on associe le nombre dérivé de la fonction f égal à 2a. On a donc défini sur

une fonction, notée f ' dont l'expression est f'(x)=2x

. Cette fonction s'appelle la fonction dérivée de f. Le mot " dérivé » vient du latin " derivare » qui signifiait " détourner un cours d'eau ». Le mot a été introduit par le mathématicien franco-italien Joseph Louis Lagrange (1736 ; 1813) pour signifier que cette nouvelle fonction dérive (au sens de "provenir") d'une autre fonction. Définitions : Soit f une fonction définie sur un intervalle I. On dit que f est dérivable sur I si elle est dérivable en tout réel x de I. Dans ce cas, la fonction qui à tout réel x de I associe le nombre dérivé de f en x est appelée fonction dérivée de f et se note f '. Formules de dérivation des fonctions usuelles : Fonction f Ensemble de définition de f Dérivée f ' Ensemble de définition de f '

f(x)=a a∈! f'(x)=0 f(x)=ax a∈! f'(x)=a f(x)=x 2 f'(x)=2x f(x)=x n n≥1 entier f'(x)=nx n-1 f(x)= 1 x \{0} f'(x)=- 1 x 2 \{0} f(x)= 1 x n n≥1 entier \{0} f'(x)=- n x n+1 \{0} f(x)=x

0;+∞

f'(x)= 1 2x

0;+∞

2YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frExemples : Vidéo https://youtu.be/9Mann4wOGJA 1) Soit la fonction f définie sur

par f(x)=x 4 alors f est dérivable sur et on a pour tout x de f'(x)=4x 3 . 2) Soit la fonction f définie sur \{0} par f(x)= 1 x 5 alors f est dérivable sur -∞;0 et sur

0;+∞

et on a pour tout x de \{0}, f'(x)=- 5 x 6 . Démonstration pour la fonction inverse : Soit la fonction f définie sur \{0} par f(x)= 1 x . Pour h≠0 et h≠-a f(a+h)-f(a) h 1 a+h 1 a h a-a-h a(a+h) h 1 a(a+h) Or : lim h→0 f(a+h)-f(a) h =lim h→0 1 a(a+h) 1 a 2 Pour tout nombre a, on associe le nombre dérivé de la fonction f égal à 1 a 2 . Ainsi, pour tout x de \{0}, on a : f'(x)=- 1 x 2 . II. Opérations sur les fonctions dérivées Exemple : Soit la fonction f définie sur par f(x)=x+x 2 . Pour h≠0 f(a+h)-f(a) h a+h+a+h 2 -a-a 2 h a+h+a 2 +2ah+h 2 -a-a 2 h h+2ah+h 2 h =1+2a+h donc lim h→0 f(a+h)-f(a) h =lim h→0

1+2a+h=1+2a

alors f est dérivable sur et on a pour tout x de f'(x)=1+2x

3YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frOn pose pour tout x de

u(x)=x et v(x)=x 2 . On a ainsi : f(x)=u(x)+v(x) . Pour tout x de u'(x)=1 et v'(x)=2x . On constate sur cet exemple que : f'(x)=u'(x)+v'(x) . Soit encore : u+v '(x)=u'(x)+v'(x)

Formules d'opération sur les fonctions dérivées : u et v sont deux fonctions dérivables sur un intervalle I. Démonstration pour la somme et l'inverse : - On veut démontrer que :

lim h→0 u+v (a+h)-u+v (a) h =u'(a)+v'(a) u+v (a+h)-u+v (a) h u(a+h)+v(a+h)-u(a)-v(a) h u(a+h)-u(a) h v(a+h)-v(a) h

Comme u et v sont dérivables sur I, on a :

lim h→0 u(a+h)-u(a) h =u'(a) et lim h→0 v(a+h)-v(a) h =v'(a) donc : lim h→0 u+v (a+h)-u+v (a) h =u'(a)+v'(a) 1 u (a+h)- 1 u (a) h 1 u(a+h) 1 u(a) h u(a)-u(a+h) hu(a)u(a+h) u(a+h)-u(a) h 1 u(a)u(a+h) u+v est dérivable sur I u+v '=u'+v' kuquotesdbs_dbs13.pdfusesText_19
[PDF] fragilité des sols

[PDF] ressource non renouvelable définition

[PDF] surexploitation des sols

[PDF] dégradation des sols par l homme

[PDF] y=f'(a)(x-a)+f(a) exemple

[PDF] comment appelle t on l'eau ? l'état gazeux

[PDF] la cene leonard de vinci

[PDF] leonard de vinci philosophe

[PDF] film de leonard de vinci

[PDF] comment est mort leonard de vinci

[PDF] qu'est ce qu'un mauvais conducteur en physique

[PDF] les gaz rares chimie

[PDF] quelles sont les molécules formées par les atomes de gaz nobles

[PDF] g(x)=e^x-x-1 etudier les variations de la fonction g

[PDF] h(x)=(-x-1)e^-x