[PDF] [PDF] examens-corriges-integrationpdf





Previous PDF Next PDF



examens-corriges-integration.pdf

Examens corrigés. François DE MARÇAY. Département de Mathématiques d'Orsay. Université Paris-Sud France. 1. Examen 1. Exercice 1.



Exercices corrigés

Université de Batna 2 Département de Mathématiques



Mesure et Intégration

ensembles mesurables et la fonction restreinte sera la mesure. Nous verrons Pour la premi`ere partie de la question intégrer par parties.



Exercices corrigés

Mesure et intégration. Année –. Exercices corrigés. Exercice # . Déterminer les bornes sup et inf des ensembles ci-dessous :.



Recueil des examens Mesures et Intégration

11 nov. 2014 ln. ( 1. 1 ? t. ) f(t)dt. Exercice 4. Soit (X s



Théorie de la mesure et intégration Université de Genève Printemps

Série 1 Correction (corrigée le 26/02/2020). Exercice 1. Correction : La fonction ? est une mesure si et seulement si X a au plus un élément. En e et.



Intégration Exercices et Corrigés

Intégration. Exercices et Corrigés avant de s'aider du corrigé. Je vous encourage `a choisir un exercice ... L'intégration par rapport `a une mesure.



Mesure et Intégration Examen Final – Corrigé 13 janvier 2014

13 jan. 2014 Mesure et Intégration. Examen Final – Corrigé. 13 janvier 2014 — durée 3 h. Notations. (a) ?n est la mesure de Lebesgue dans Rn.



Mesure et Intégration

comporte la matière de Mesure et Intégration. Les chapitres de ce polycopié se terminent par des exercices corrigés puisés dans.



Intégration et probabilités (cours + exercices corrigés) L3 MASS

Le but de ce cours est d'introduire les notions de théorie de la mesure qui seront utiles en calcul des probabilités et en analyse.



[PDF] examens-corriges-integrationpdf

Examens corrigés François DE MARÇAY Département de Mathématiques d'Orsay Université Paris-Sud France 1 Examen 1 Exercice 1 [Inégalité de Tchebychev] 



[PDF] Recueil des examens Mesures et Intégration

11 nov 2014 · Université Mohammed V de Rabat Faculté des Sciences Département de Mathématiques Recueil des examens Mesures et Intégration



[PDF] Théorie de la mesure et intégration Université de Genève Printemps

Théorie de la mesure et intégration Université de Genève Printemps 2020 Section de Mathématiques Série 1 Correction (corrigée le 26/02/2020)



[PDF] Mesure et Intégration - Département de mathématiques et statistique

MESURE ET INT´EGRATION EN UNE DIMENSION Notes de cours André Giroux Département de Mathématiques et Statistique Université de Montréal Mai 2004 



[PDF] Exercices corrigés

Mesure et intégration Année – Exercices corrigés Exercice # Déterminer les bornes sup et inf des ensembles ci-dessous :



[PDF] Mesure et Intégration Examen Final – Corrigé 13 janvier 2014

13 jan 2014 · Mesure et Intégration Examen Final – Corrigé 13 janvier 2014 — durée 3 h Notations (a) ?n est la mesure de Lebesgue dans Rn



[PDF] Intégration et probabilités (cours + exercices corrigés) L3 MASS

Le but de ce cours est d'introduire les notions de théorie de la mesure qui seront utiles en calcul des probabilités et en analyse



[PDF] Intégration Exercices et Corrigés - ceremade

Intégration par rapport `a une mesure image 28 8 Centre de masse 31 9 Noyaux probabilistes 32 Chapitre 3 Interversion de limites et d'intégrales



Examens corrigés de Théorie de la mesure et de lintégration

EXAMENS AVEC CORRIGES ET DES CONTROLES CONTINUES TRAVAUX DIRIGES DE MODULE INTEGRATION filière SMIA S5 PDF Mathématiques SMIA semestre 5 integration 



[PDF] Exercices corrigés - opsuniv-batna2dz

Université de Batna 2 Département de Mathématiques 3 Année Licence Mathématiques Mesure et Intégration Exercices corrigés Exercice 1

:

Examens corrigés

FrançoisDEMARÇAY

Département de Mathématiques d"Orsay

Université Paris-Saclay, France

1. Examen 1

Exercice 1.

[Inégalité de Tchebyche v]Soitf:Rd!R+une fonction intégrable à valeurs positives qui est Lebesgue-intégrable. Pour >0, on pose : E :=x2Rd:f(x)> :

Montrer que (figure-bonus possible) :

m E61 Z f: Exercice 2.En dimensiond>1, soit une fonction mesurablef:Rd!R+à valeurs positives finies. (a)Rappeler la définition initiale de la mesurabilité d"une fonction, puis des caractérisa- tions équivalentes. (b)Montrer que, pour tout entierk2Z, les sous-ensembles : E k:=x2Rd: 2k1< f(x)62k sont mesurables dansRd. (c)Montrer que l"on a la réunion disjointe (figure-bonus possible) : 1[ k=1E k=x2Rd:f(x)>0: (d)Pour tout entiern2N, on introduit la fonction étagée : F n:=k=+nX k=n2 k1Ek; ainsi queF:=limn!1Fn. Montrer que l"on a en tout point : 12

F6f6F:

(e)Montrer que la fonction d"originefest Lebesgue-intégrable si et seulement siP1 k=12km(Ek)<1. 1

2 FrançoisDEMARÇAY, Département de Mathématiques d"Orsay, Université Paris-Saclay, France(f)Aveca;b2R, on introduit les deux fonctions :

f(x) :=8 :1jxjapour00autrement;etg(x) :=8 :1jxjbpourjxj>1;

0autrement:

En utilisant(e), montrer quefest Lebesgue-intégrable surRdexactement lorsquea < d, et aussi, montrer quegest Lebesgue-intégrable surRdexactement lorsqueb > d. Exercice 3.Sur un segment compact[a;b]bR, soitf: [a;b]!Rune fonction réelle quelconque, pas forcément bornée. Montrer qu"on peut néanmoins définir sans modifica- tion la notion de Riemann-intégrabilité def, mais montrer alors que si, pour tout" >0, il existe une subdivisionde[a;b]telle que la différence entre les sommes de Darboux supérieure et inférieure defsatisfait(f)(f)6", alors ceci implique en fait que fest nécessairement bornée. Exercice 4.SoientE1;E2;E3; :::Rdune infinitédénombrable d"ensembles mesurables emboîtés de manière décroissante les uns dans les autres : E kEk+1(k>1):

On suppose que pour un certain entierk0>1, on a :

mEk0<1:

En utilisant un théorème fondamental énoncé avec soin concernant les réunions dénom-

brables disjointes d"ensembles mesurables, montrer que (figure-bonus possible) : m 1\ k=1E k =limK!1mEK; puis trouver un exemple simple faisant voir que cette conclusion peut être mise en défaut sans l"existence dek0tel quem(Ek0)<1. Exercice 5.Le but de cet exercice est de montrer que recouvrir les sous-ensemblesERd par un nombrefinide cubes ne suffit pas à produire un concept réellement satisfaisant de mesure extérieurem(E). On se restreint ici à la dimensiond= 1. En effet, lamesure extérieure de JordanmJ(E)peut être définie par : m

J(E) =infJX

j=1 Ij; où l"infimum est pris sur les recouvrementsfinis : EJ[ j=1I j; par des intervalles fermésIj. (a)Montrer quemJ(E) =mJE pour tout sous-ensembleER. (b)Trouver un sous-ensemble dénombrableE[0;1]tel quemJ(E) = 1, tandis que sa mesure extérieure de Lebesgue vautm(E) = 0.

1.Examen 1 3Exercice 6.DansRd, soit un nombre fini quelconquen>1de sous-ensembles mesurables

A

1;A2;:::;AnRdde mesures finies :

m(A1)<1; m(A2)<1; ::::::; m(An)<1:

Montrer que (figure-bonus possible) :

m A

1[A2[ [An

=X

16k6n(1)k1X

16i1 A i1\Ai2\ \Aik Exercice 7.Soitmla mesure de Lebesgue surRet soit" >0arbitrairement petit.

Construire un ouvert

Rdense dansRtel quem(

)6". Exercice 8.Soitf2C0c(Rd;R)une fonction réelle continue à support compact. Montrer que :

0 =limh!0Z

R df(xh)f(x)dx: Indication:Sisupp(f)B(0;R)pour un rayonR1assez grand, se limiter àh2Rdavec jhj<1et se ramener àR

B(0;R+1).

Exercice 9.Trouver une suite de fonctions en escalierfn: [0;1]!R+satisfaisant :

0 =limn!1Z

1 0 f n(x)dx; mais telle que, entoutpointx2[0;1], la suite numérique :fn(x)1 n=1 soit bornée et ne converge vers aucune valeur réelle.Indication:Utiliser la suite double F k;m(x) :=1[k1m ;km ]pour16k6m, illustrer son comportement pourm= 1;2;3;4,

décrire en mots les idées qui viennent à l"esprit, et enfin, rédiger en détail une démonstra-

tion rigoureuse.

4 FrançoisDEMARÇAY, Département de Mathématiques d"Orsay, Université Paris-Saclay, France2. Corrigé de l"examen 1

Exercice 1.Commef:Rd!R+est Lebesgue-intégrable, pour tout réel >0, l"en- semble de sur-niveau : E :=x2Rd:f(x)> est mesurable dansRd. De plus, l"inégalité entre fonctions : f(x)>1E(x)(8x2Rd); est claire lorsquex62Ecarf(x)>0 =0par hypothèse, et vraie aussi lorsquex2E, carf(x)> =1, donc elle est satisfaite partout. Par intégration de cette inégalité, nous obtenons instantanément :Z R df>mE; ce qui donne bienm(E)61 R R df. R R df E EE m(E) Géométriquement, l"hypographe def:(x;y)2RdR+: 06y6f(x); dont la mesure(d+ 1)-dimensionnelle vautR R dfd"après un théorème du cours, est "coupé» à hauteur >0, et sur le sous-ensembleERdoùf > , on ne retient que la valeur-type, ce qui correspond à restreindre la considération au "pseudo-rectangle» de hauteuret de "base»E, lequel est entièrement contenu dans l"hypographe def au-dessus deE:(x;y):x2E;06y6(x;y):x2E;06y6f(x);

et par intégration "visuelle», on trouve bien que l"aire de ce pseudo-rectangle est inférieure

à l"aire intégrale totale :

mE6Z R df:

2.Corrigé de l"examen 1 5Exercice 2.(a) Une fonctionf:E! f1g [R[ f1gdéfinie sur un sous-ensemble

mesurableERdest ditemesurablesi, pour touta2R, son ensemble de sous-niveau : f

1[1; a[=x2E:f(x)< a;

est un sous-ensemblemesurabledeRd. Dans le cours, on a obtenu les caractérisations

équivalentes suivantes :

pour touta2R, l"ensemble :x2E:f(x)6a est mesurable; pour touta2R, l"ensemble :x2E:f(x)>a est mesurable; pour touta2R, l"ensemble :x2E:f(x)> a est mesurable; pour tout couple de nombres réels finis :

1< a < b <+1;

les ensembles-tranches : a < f < b sont mesurables; plus généralement, il en va de même en remplaçantfa < f < bgpar l"un des trois ensembles :a6f < b;a < f6b;a6f6b: (b)On en déduit que pour toutk2Z, les ensemblesEk:=fx2Rd: 2k1< f(x)6 2 kgsont mesurables dansRd. (c)Pour toutk2Z, l"ensembleEk=fx2Rd: 2k1< f(x)62kgest contenu dans l"ensemble : E :=x2Rd:f(x)>0; donc : k2ZE kE: Pour l"inclusion opposée, soitx2Equelconque. Commef(x)>0, et comme la réunion d"intervalles enchaînés :a k2Z

2k1;2k= ]0;1[

est disjointe, il existe un unique entierkx2Ztel que : 2 kx1< f(x)62kx; ce qui signifiex2Ekx, et donne bien :[ k2ZE kE:

6 FrançoisDEMARÇAY, Département de Mathématiques d"Orsay, Université Paris-Saclay, France(d)Soitx2Rdquelconque fixé.

Sif(x) = 0, alors pour toutn2N, puisquex62Ekquel que soitk2Z, on a : F n(x) =X jkj6n2 k1Ek(x) = 0; puis en faisantn! 1:

F(x) = 0 =f(x);

d"où trivialement 12

F(x)6f(x)6F(x), car12

06060, c"est très vrai, mon bébé!

Si maintenantf(x)>0, il existe un uniquekx2Ztel quex2Ekx, d"où pour tout n>jkxj: F n(x) = 2kx; puis en faisantn! 1:

F(x) = 2kx:

Comme par définition dekxon a :

12

F(x) = 2kx1< f(x)62kx=F(x);

en relaxant la "strictitude» de l"inégalité à gauche, nous obtenons bien12

F(x)6f(x)6

F(x). (e)Commef:Rd!R+est mesurable à valeurs positives finies,fest Lebesgue- intégrable (par définition!) si et seulement siR R df <1. Or une intégration de l"enca- drement defparFobtenu à l"instant dans la question précédente donne : 12 Z R dF6Z R df6Z R dF; doncfest Lebesgue-intégrable surRdsi et seulement siFl"est. Maintenant, il est temps d"observer que la suite(Fn)1n=1de fonctions positives est crois- sante : F n+1(x)Fn(x) = 2(n+1)1En1(x) + 2n+11En+1(x)>0; ce qui permet d"appliquer le théorème de convergence monotone pour obtenir :Z R dF=Z R d limn!1Fn =limn!1Z R dFn =limn!1Z R d X jkj6n2 k1Ek =limn!1X jkj6n2 kmEk X k2Z2 kmEk

2R+[ f1g;

et donc on a bien : Z R df <1 ()Z R dF <1 ()X k2Z2 kmEk:

2.Corrigé de l"examen 1 7(f)Avec un exposanta2R, la fonction :

f a(x) :=(jxjalorsque00ailleurs;

est mesurable à valeurs>0. Puisque dans la boule unité ferméefjxj61g, on ajxjc61pour tout exposant réel c>0, la fonctionfaest toujours intégrable lorsquea60. Supposons donca >0, et, en application de ce qui précède, regardons, pour toutk2Z, les ensembles : E k=x2Rd: 2k1< fa(x)62k x2Rd: 06jxj<12 k1a qui s"avèrent ainsi visuellement être une collection infinie d"anneaux (en dimensiond= 2), ou de coquilles sphériques (en dimensiond= 3), emboîtés. Or lorsquek60, on voit queEk=;, et donc seuls lesEkaveck>1interviennent. Maintenant, grâce à la question(e),fest Lebesgue-intégrable si et seulement si : 1X k=12 kmEk<1: Mais chacune de ces coquillesd-dimensionnellesEkaveck>1apparaît manifestement comme étant la dilatée du facteur 12 ka de la coquille de référence : C a:=x2Rd: 16jxj<12 1a évidemment de mesure strictement positive finie0< m(Ca)<1, et donc d"après la propriété naturelle de dilatation de la mesure de Lebesgue : mF=dm(F)(>0; FRdmesurable); on obtient ici : mEk=12 ka d mCa; d"où enfin, en reconnaissant une série géométrique sérendipitrice : 1 X k=12 kmEk=mCa1X k=12 k(1da )=8 :1lorsquea>d; m(Ca)2(1da )12(1da )lorsque0< a < d; ce qui montre quefaest intégrable si et seulement sia < d. Passons maintenant au cas - fort similaire! - de la fonction : g b(x) :=(jxjblà oùjxj>1;

0ailleurs:

Lorsqueb>0, elle est manifestement non-intégrable.

Supposons doncb >0. Dans ce cas :

E k=x2Rd:jxj>1et12quotesdbs_dbs21.pdfusesText_27
[PDF] vecteur gaussien centré

[PDF] matrice de variance et covariance exercice corrigé

[PDF] exercice microéconomie consommateur

[PDF] exercice aire et périmètre 3eme

[PDF] exercices corrigés arithmétique 3eme

[PDF] relations interspécifiques exercices

[PDF] relations interspécifiques exemples

[PDF] exercice sur les facteurs biotiques

[PDF] démontrer que deux triangles sont isométriques

[PDF] triangles isométriques démonstrations

[PDF] triangles isométriques exercices corrigés

[PDF] figures isométriques et semblables exercices

[PDF] triangles isométriques exercices corrigés 4ème

[PDF] figures isométriques exercices

[PDF] isométrie exercices corrigés