[PDF] [PDF] Fonctions de deux variables

Pour calculer la premi`ere dérivée partielle, on consid`ere y comme un param` etre et on dérive comme d'habitude Exemple Posons f := (x,y) ↦→ xy + y2 + cosxy



Previous PDF Next PDF





[PDF] Fonctions de deux variables - LaBRI

Exemples f x,y 2x2y 3xy x y 5 admet des dérivées partielles en x et en y pour tout Definition On appelle élasticité de y par rapport à x le rapport entre la 



[PDF] Fonctions de plusieurs variables - Thierry Sageaux

10 oct 2016 · en ai, alors le nombre dérivé fi(ai) est appelé dérivée partielle de f par Il faut comprendre l'élasticité d'une fonction de plusieurs variables f 



[PDF] Leçon 02 – Cours : Fonctions à plusieurs variables - u-psudfr

plusieurs variables (parmi lesquels les dérivées partielles, les différentielles ) L'emploi Appliquons la formule qui donne l'élasticité de la fonction k : σ = dk



[PDF] Chapitre 4 fonction de plusieures variables Cours - ESEN

dérivée partielle de f par rapport à la composante xi , la fonction définie de R™ dans Définition 4 18 On appelle élasticité de f par rapport à la variable c; en un



[PDF] La notion délasticité et ses applications Motivations Contenu 1 La

alors l'élasticité prix de la demande de glace est calculée par: 2 10 20 100 00 2 Toutefois, élasticité et dérivée sont liées par une formule « magique »



[PDF] FONCTIONS DE n VARIABLES RÉELLES - MAPLECO

fpx:=D[1](f);#fonction dérivée partielle par rapport à x fpy:=D[2](f);#fonction 2 x 2 Cy 2 2 2 L'élasticité de f par rapport à la variable x est, par définition : 1 



[PDF] Cours dAnalyse Fonctions de plusieurs variables

DÉRIVÉES PARTIELLES ET ÉLASTICITÉ est dérivable au point x0 La dérivée est alors appelée premi`ere dérivée partielle de f en (x0,y0) et notée : ∂f ∂x



[PDF] Microéconomie 1 Définitions mathématiques importantes

Pour une fonction à deux variables, il y a deux dérivées partielles premières P (Q), où : ϵ est l'élasticité-prix de la demande adressée au monopole ;



[PDF] Fonctions de deux variables

Pour calculer la premi`ere dérivée partielle, on consid`ere y comme un param` etre et on dérive comme d'habitude Exemple Posons f := (x,y) ↦→ xy + y2 + cosxy



[PDF] Fonctions à deux variables - Normale Sup

25 jan 2012 · Les dérivées partielles d'une fonction à deux variables sont les dérivées de en un point d'un isoquant sont appelés coefficients d'elasticité :

[PDF] élasticité exercice corrigé

[PDF] élasticité formule

[PDF] élasticité linéaire exercice

[PDF] élasticité linéaire exercice corrigé

[PDF] élasticité linéaire isotrope

[PDF] élasticité logarithme

[PDF] elasticité mercatique calcul

[PDF] élasticité prix de l'offre calcul

[PDF] élasticité prix de l'offre definition

[PDF] elasticité prix de la demande monopole

[PDF] électifs sciences po

[PDF] election parents d'élèves 2016 2017

[PDF] election parents d'élèves 2017 2018

[PDF] election parents d'élèves 2018

[PDF] election primaire 2016

Fonctions de deux variables

D´edou

Mai 2011

D"une `a deux variables

Les fonctions mod`elisent de l"information d´ependant d"un param`etre. On a aussi besoin de mod´eliser de l"information d´ependant de plusieurs param`etres, et c"est ce que font les fonctions de plusieurs variables. Ce qu"on sait faire pour les fonctions d"une variable s"´etend dans une certaine mesure aux fonctions de plusieurs variables comme on va le voir.

Exemple de fonctions de deux variables

Comme les fonctions d"une variable, celles de deux variables s"´ecrivent avec "?→". En voici une :d:= (x,y)?→ |x-y|. Je l"appelledparce que d(x,y) est la distance entrexety. En voici une autre :p:= (R,R?)?→RR?R+R?. C"est la fonction qui donne la r´esistance d"un montage en parall`ele de deux r´esistances. C"est pour ¸ca que j"ai appel´e les variablesRetR?, mais j"aurais aussi bien pu ´ecrire la mˆeme fonction (x,y)?→xyx+y.Exo 1 Donnez votre exemple favori de fonction de deux variables.

Domaine de d´efinition

Certaines fonctions sont d´efinies pour toutes les valeurs des (deux) variables mais d"autres non. On va dire que les fonctions de deux variables sont les applications deR2dansR?, ce qui permet de d´efinir le domaine de d´efinition par la formule :

DDf:={(x,y)?R2|f(x,y)?=?}.Exemple

Posonsf:= (x,y)?→ln(x-y2)-2?y-x2.

C"est une partie du plan et ¸ca se dessine.Exo 2

Dessinez le domaine de d´efinition de

f:= (x,y)?→xln(x+y)-y⎷y-x.

Graphe

Le grapheGrfd"une fonctionfde deux variables, c"est une partie deR3, `a savoir :

Grf:={(x,y,z)?R3|z=f(x,y)}.Exemple

a) Le graphe de (x,y)?→x+y+ 1 est le plan passant par (0,0,1),(1,0,2) et (0,1,2). b) Le graphe de (x,y)?→?1-x2-y2est "l"h´emisph`ere nord" de la sph`ere unit´e.Ca se dessine ou se visualise.

D´eriv´ees partielles

Pour une fonction de deux variables, il y a deux d´eriv´ees, une "par rapport `ax" et l"autre "par rapport `ay". Les formules sont (`a gauche la premi`ere, `a droite la seconde) : (a,b)?→(x?→f(x,b))?(a) (a,b)?→(x?→f(a,x))?(b). La premi`ere est not´eef?xou parfois∂f∂xet la seconde est not´eef?y ou parfois ∂f∂y. On a donc f ?x(a,b) = (x?→f(x,b))?(a)f?y(a,b) = (x?→f(a,x))?(b).

Calcul de la premi`ere d´eriv´ee partielle

Pour calculer la premi`ere d´eriv´ee partielle, on consid`ereycomme un param`etre et on d´erive comme d"habitude.Exemple

Posonsf:= (x,y)?→xy+y2+ cosxy.On a

f ?x(x,y) =y-ysinxy.Exo 3

Calculezf?x(x,y) pourf:= (x,y)?→xy2-y+exy.

Calcul de la seconde d´eriv´ee partielle

Pour calculer la seconde d´eriv´ee partielle, on consid`erexcomme un param`etre et on d´erive "eny".Exemple

Posonsf:= (x,y)?→xy+y2+ cosxy.On a

f ?y(x,y) =x+ 2y-xsinxy.Exo 4

Calculezf?y(x,y) pourf:= (x,y)?→xy2-y+exy.

Le gradient

Si on met les deux d´eriv´ees partielles ensemble, on obtient le gradientdef, qu"on note?f, ce qui se lit aussi "nablaf" :

Posonsf:= (x,y)?→xy+y2.On af?x(x,y) =yet

f ?y(x,y) =x+ 2y. Le gradient defau point (3,10) est donc (10,23).Exo 5 Calculez le gradient def:= (x,y)?→xey-3yx2en (1,1).

Le dessin du gradient

Le gradient?f(M) defau pointMest un ´el´ement deR2qu"on voit comme un vecteur. Et ce vecteur, on est libre de le voir o`u on veut : alors on fait le choix des physiciens qui consiste `a voir l"origine de ce gradient enM. Ainsi, quandMvarie, on a un gradient en chaque point. Les physiciens disent que le gradient d"une fonction est un "champ" de vecteurs.Exemple Pourf:= (x,y)?→x2+ 2y2, on a?f(2,1) = (4,4) et ¸ca se dessine.Exo 6

Pourf:= (x,y)?→xy-y2, dessinez?f(1,1).

Le sens du gradient

A une variable, la d´eriv´ee dit dans quel sens varie la fonction et `a quelle vitesse : plus la d´eriv´ee est grande, plus la fonction augmente ("en premi`ere approximation"). A deux variables, le gradient pointe dans la direction o`u la fonction augmente le plus, et plus il est long, plus la fonction augmente ("en premi`ere approximation").

Points critiques

On a compris qu"une fonction d´erivable d"une variable atteint ses bornes l`a o`u sa d´eriv´ee s"annule (ou au bord de son DD). A deux variables c"est pareil, sauf que la d´eriv´ee est remplac´ee par le gradient.D´efinition Les points critiques d"une fonctionfde deux variables sont les points o`u son gradient s"annule.

Points critiques : exemples

Exemple

Les points critiques def:= (x,y)?→x3-3x+y2sont ceux qui v´erifient les deux ´equations 3x2-3 = 0 et 2y= 0. On trouve deux points critiques : (1,0) et (-1,0).Exo 7 Trouver les points critiques def:= (x,y)?→x2-4x+y3-3y.

Courbes de niveau

Les courbes de niveau d"une fonctionfde deux variables sont lesquotesdbs_dbs3.pdfusesText_6