[PDF] [PDF] Ift 2421 Chapitre 3 Résolution des systèmes déquations linéaires

Chapitre 3 Méthode de Cramer Si A x = b est un système de n équations avec n inconnues tel que det (A) ≠ 0 alors le système a une solution unique qui est



Previous PDF Next PDF





[PDF] Déterminants de Cramer

RÉSOLUTION DES SYSTÈMES D'ÉQUATIONS À 2 INCONNUES PAR LA MÉTHODE DES DÉTERMINANTS DE CRAMER Système étudié à titre d' exemple:



[PDF] Ift 2421 Chapitre 3 Résolution des systèmes déquations linéaires

Chapitre 3 Méthode de Cramer Si A x = b est un système de n équations avec n inconnues tel que det (A) ≠ 0 alors le système a une solution unique qui est



[PDF] Chapitre 1 : Systèmes linéaires déquations

Résolution générale par la méthode de Cramer C'est le mathématicien suisse Gabriel Cramer (1704-1752) qui a introduit l'expression générale de la solution 



[PDF] FORMULES DE CRAMER - Manuel {toutes les Maths}

1) Donner la démonstration élémentaire des formules de Cramer dans le cas En utilisant la méthode du pivot de Gauss, on conserve la première équation, 



[PDF] Systèmes linéaires

Si vous savez déjà résoudre un système linéaire par la méthode de Gauss, vous n'apprendrez pas grand 3 Compléments 27 3 1 Les formules de Cramer



[PDF] Download

substitution et (iii) par la “règle de Cramer” Les deux premières méthodes sont très simples à utiliser dans le cas de deux variables Par contre, la méthode de 



[PDF] Pivot de Gauss Résolution dun système de Cramer

renvoi: A',B' Informatique (MPSI PCSI) SIM-NUM-4 - Pivot de Gauss Année 2019 - 2020 16 / 61 Page 20 Méthode de Gauss Inversion de matrice Résolution



[PDF] Systèmes déquations linéaire ; opérations élémentaires, aspects

tions, puis on développera une méthode algorithmique de résolution par opérations Un système de Cramer admet donc une unique solution x = A−1 b



[PDF] Systèmes déquations linéaires - IUTenligne

Formules de Cramer 3 Cas des systèmes 3×3 Présentation du problème Méthode des tableaux sur un exemple Déterminant d'un système 3×3 Unicité de la 



[PDF] La méthode du pivot de Gauss-Jordan et ses applications

Définition : Un système triangulaire est dit de Cramer si les coefficients sont tous non nuls Propriété : Un système de Cramer possède une unique solution que l' 

[PDF] comment faire un bilan comptable pdf

[PDF] faire un bilan comptable exemple

[PDF] faire un bilan comptable exercice

[PDF] logiciel bilan comptable

[PDF] faire un bilan synonyme

[PDF] exemple bilan financier

[PDF] comment faire aimer la lecture ? mon fils de 9 ans

[PDF] outil excel de gestion de syndic bénévole

[PDF] excel pour syndic bénévole copropriété

[PDF] modele bilan d'ouverture excel

[PDF] bilan d'ouverture modèle

[PDF] tableau excel charges copropriété

[PDF] les monstres de l'odyssée d'ulysse

[PDF] message envoyé par les dieux dans l'odyssée

[PDF] les monstres de l'odyssée wikipédia

Ift24211 Chapitre 3Ift 2421

Chapitre 3

Résolution des systèmes

d'équations linéaires

Ift24212 Chapitre 3Introduction

Description:

U = R . I

Loi de Kirchhoff:Le voltage sur une boucle fermée est nul.

Intensité entrante = intensité sortante.

donc 5 i

1 + 5 i2 = V

i

3 - i4 - i5 = 0

2 i

4 - 3 i5 = 0

i

1 - i2 - i3 = 0

5 i

2 - 7 i3 - 2 i4 = 0

Ift24213 Chapitre 3Exemples de situations nécessitant la résolution d'un système d'équations linéaires.

· Potentiel dans un circuit électrique

· Tension dans une structure

· Flot dans un réseau hydraulique

· Mélange de produits chimiques

· Vibration d'un système mécanique

· Élasticité

· Transfert de chaleur

· Réduction d'équation différentielles

Ift 2450

Ift24214 Chapitre 3Notation :Considérons le système suivant :axaxb axaxb1111221

2112222+=

+=ìíîCe système sera noté par :(en notation matricielle) aa aax xb b1112 21221
21

ûúou aussi

A . x = b10 Rappels sur les matrices :

1. Multiplications entre matrices

conformes seulement : si A est

KxL et B est MxN alors A.B

existe ssi L=M.

2. On a l'associativité du produit :

A.(B.C)=(A.B).C

3. On n'a pas de façon générale de

commutativité : A.B ¹ B.A

4. Un vecteur est une matrice dont

l'une des dimensions est 1.

5. Une matrice 1x1 est associée de

façon bijective à un nombre réel.

6. La transposée AT d'une matrice

A est obtenue en interchangeant

les lignes et les colonnes.

7. Une matrice carrée NxN est dite

d'ordre N.

8. La matrice Zéro (notée 0) est

entièrement composée de zéros.

9. La matrice identité (notée I) a des

1 sur la diagonale et des zéros

ailleurs.

10. La trace d'une matrice est la

somme des éléments de sa diagonale.

Ift24215 Chapitre 3Méthode de Cramer

Si A . x = b est un système de n équations

avec n inconnues tel que det (A) ¹ 0 alors le système a une solution unique qui estx A AxA AxA Ann 11

22===det()

det(),det() det(),,det() det()K avec Aj la matrice obtenue en remplaçant la jème colonne de A par le vecteur b.

Ordre de la méthode:

O(n!) n > 20

5 fois la vie de l'univers.

Ift24216 Chapitre 3Système triangulaire :

· Inférieur

úúúúúSubstitution Avant

· Supérieur

úúúúúSubstitution Arrière

0

Résoudre le système :

312
077

002112

21
421
2 3- úx x x et le système : 300
170
27213
22
191
2 3- úx x xMatrice augmentée :300 170
27213
22
19-

Ift24217 Chapitre 3Systèmes équivalents

2 systèmes sont équivalents

Ils peuvent être obtenus l'un

à partir de l'autre avec

uniquement des opérations

élémentaires.

Deux systèmes équivalents

ont la même solution.Opérations élémentaires surles lignes d'une matrice

1. Multiplication d'unerangée par une constante

2. Les équations peuvent êtrepermutées.

3. Combinaison linéaire desrangées.

Exemple de système

Rxxx Rxxx

Rxxx1123

2123

31233212

2311
222:
312
123
22112
11 21
2 3- úx x xet de systèmes équivalents

262424

222

32131123

3123

2313Rxxx

Rxxx RRxx: 624
221
30224
2 131
2 3- úx x x

Ift24218 Chapitre 3Élimination de Gauss2 étapes :1. Transformation du système original en un système triangulaire supérieur.

2. Résolution du système triangulairepar substitution arrière.Exemple de système :

Rxxx Rxxx

Rxxx1123

2123

31233212

2311
222:

Premier pivot (a

11 = 3) :Rxxx

RRxx

RRxx1123

2123

31233212

1 37
37
37
2 34
37
36:
---=-Second pivot (a

22 = 7/3) :

Rxxx Rxx

RRx1123

223

3233212

73737

43732:

Substitution arrière :

x xx xxx3 23
1232
37773

3777321

13122

13121223=

Ift24219 Chapitre 3Remarques sur la méthode de Gauss1. Un pivot est une valeur par laquelle on doit diviser pour résoudre le système linéaire.

2. On n'a pas utilisé la seconde opération élémentaire.

3. On peut aussi travailler avec la matrice augmentée.Coût :Ordre O(n

3/3) flops

(Floting point operations)

Notes :Substitution arrière

Ordre O(n2/2) flops

négligeable lorsque n tend vers infini.Méthode de Gauss Jordan

· fait disparaître les

coefficients en haut et en bas de la diagonale.

· Pas de substitution arrière.

Coût :Ordre O(n

3/2) flops

déconseillée

Ift242110 Chapitre 3PivotageTechnique de pivotage partiel :Permute 2 lignes pour avoir le pivot maximum en valeur

absolue.

Technique de pivotage complet :Permute 2 lignes de la matrice augmentée, puis interchange 2inconnues du système pour avoir le pivot maximum en valeur

absolue.

Raisons du pivotage

Division par un très petit pivotvaleurerreurPivotvaleurerreurvaleurerreur+=+=+-101010151515

Exemple :043

4132
6371
3

2-é

úPivotage partiel (R

1 " R3)637

4132
0432
3

1-é

Suffisant pour éviter les

divisions par 0.

Peut aussi améliorer la

précision des calculs.

Ift242111 Chapitre 3Pivotage Complet

Étape 1 : (R1 " R2)4132

043
6373
1 2-

Étape 2 : (C1 " C3)-

ú3214

340
7363
1 2

Attention :Garder l'ordre des inconnues.

O = ( 3, 2, 1)

4132
043
6374
0 61
4quotesdbs_dbs4.pdfusesText_7