[PDF] [PDF] Chapitre 1 : Systèmes linéaires déquations

Résolution générale par la méthode de Cramer C'est le mathématicien suisse Gabriel Cramer (1704-1752) qui a introduit l'expression générale de la solution 



Previous PDF Next PDF





[PDF] Déterminants de Cramer

RÉSOLUTION DES SYSTÈMES D'ÉQUATIONS À 2 INCONNUES PAR LA MÉTHODE DES DÉTERMINANTS DE CRAMER Système étudié à titre d' exemple:



[PDF] Ift 2421 Chapitre 3 Résolution des systèmes déquations linéaires

Chapitre 3 Méthode de Cramer Si A x = b est un système de n équations avec n inconnues tel que det (A) ≠ 0 alors le système a une solution unique qui est



[PDF] Chapitre 1 : Systèmes linéaires déquations

Résolution générale par la méthode de Cramer C'est le mathématicien suisse Gabriel Cramer (1704-1752) qui a introduit l'expression générale de la solution 



[PDF] FORMULES DE CRAMER - Manuel {toutes les Maths}

1) Donner la démonstration élémentaire des formules de Cramer dans le cas En utilisant la méthode du pivot de Gauss, on conserve la première équation, 



[PDF] Systèmes linéaires

Si vous savez déjà résoudre un système linéaire par la méthode de Gauss, vous n'apprendrez pas grand 3 Compléments 27 3 1 Les formules de Cramer



[PDF] Download

substitution et (iii) par la “règle de Cramer” Les deux premières méthodes sont très simples à utiliser dans le cas de deux variables Par contre, la méthode de 



[PDF] Pivot de Gauss Résolution dun système de Cramer

renvoi: A',B' Informatique (MPSI PCSI) SIM-NUM-4 - Pivot de Gauss Année 2019 - 2020 16 / 61 Page 20 Méthode de Gauss Inversion de matrice Résolution



[PDF] Systèmes déquations linéaire ; opérations élémentaires, aspects

tions, puis on développera une méthode algorithmique de résolution par opérations Un système de Cramer admet donc une unique solution x = A−1 b



[PDF] Systèmes déquations linéaires - IUTenligne

Formules de Cramer 3 Cas des systèmes 3×3 Présentation du problème Méthode des tableaux sur un exemple Déterminant d'un système 3×3 Unicité de la 



[PDF] La méthode du pivot de Gauss-Jordan et ses applications

Définition : Un système triangulaire est dit de Cramer si les coefficients sont tous non nuls Propriété : Un système de Cramer possède une unique solution que l' 

[PDF] comment faire un bilan comptable pdf

[PDF] faire un bilan comptable exemple

[PDF] faire un bilan comptable exercice

[PDF] logiciel bilan comptable

[PDF] faire un bilan synonyme

[PDF] exemple bilan financier

[PDF] comment faire aimer la lecture ? mon fils de 9 ans

[PDF] outil excel de gestion de syndic bénévole

[PDF] excel pour syndic bénévole copropriété

[PDF] modele bilan d'ouverture excel

[PDF] bilan d'ouverture modèle

[PDF] tableau excel charges copropriété

[PDF] les monstres de l'odyssée d'ulysse

[PDF] message envoyé par les dieux dans l'odyssée

[PDF] les monstres de l'odyssée wikipédia

CHAPITRE 1

Systèmes d'équations

1. Définition et exemple

Définition. Un système linéaire de 2 équations à 2 inconnues est un ensemble de deux ()p

équations de la forme :

p axbyc axbyc HZ HZ R S T 1 2)

où est le couple d'inconnues ett ntes appelées coefficients du xy,bg a, b, c, a', b' ec' sont des consta

système et vérifiant les conditions bg et . Résoudre le système revient à ab,,bÖ00ggab',',bgbÖ00

trouver le ou les couples (),xy?×oo qui satisfont simultanément les deux équations (1) et (2).

Ces couples sont les solutions du système.

Exemple. Considérons le système linéaire de deux équations à deux inconnues : p 2381
7412
xy xy HZ JZJ R S T Intéressons-nous d'abord aux solutions de l'équation (1). Le couple best une solution de cette

équation, car . Mais c'est loin d'être l'unique solution ! En effet il est facile de vérifier

que 12,g 21328

ôHôZ

(,),(24,),(,),...JJ561 5 2 sont d'autres couples de solution de cette équation. En fait l'équation

(1) admet une infinité de solutions. La forme générale de ces solutions peut s'obtenir en calculant y

en fonction de x :

238382

82
3 xyyxy x

HZøZJøZ

J Le s solutions de (1) sont donc les couples de la forme x x 82
3 J FI K J H G où x est un réel quelconque.

Par exemple : si xZJ2 alors yZ

JôJ

ZZ 822
3 12 3 4 , d'où la solution bg. J24,

De même, l'équation (2) admet une infinité de solutions. On trouve facilement que ce sont les

couples de la forme x x 71
4H F H G I K J , où x est un réel quelconque. Par exemple : 12235 15 4 ,,,,,,...bgbgJbg Remarquons que le couple b est à la fois solution de (1) et de (2). C'est donc une solution du

système . Le système admet-il d'autres solutions ? Les méthodes de résolutions exposées

ci-dessous vont prouver que best l'unique solution de . 12, ()p 12,g g ()p ()p

2. Méthodes de résolution

Reprenons le système de l'exemple précédent. ()p a) Résolution par substitution (Z remplacement) On calcule y en fonction de x à l'aide de l'équation (1) :

238382

82
3

3xyyxy

x

HZøZJøZ

J

On substitue l'équation (3) dans l'équation (2) : On substitue l'équation (3) dans l'équation (2) :

74
82
3 13

214823

213283

2929
14 x x xx xx x x J J F H G I K J

ZJô

øJJZJ

øJHZJ

øZ øZ bg

Finalement on substitue (4) dans (3) :

yZ Jô ZZ 821
3 6 3 2 Le système admet donc une solution unique : . SZ12,bgmr b) Résolution par combinaison linéaire Combinons d'abord les équations (1) et (2) pour éliminer y :

41ô() : 81232xyHZ (1')

32ô() : 21123xyJZJ (2')

(1') + (2') : 29291xxZøZ Combinons maintenant les équations (1) et (2) pour éliminer x :

71ô() : 142156xyHZ (1'')

Jô22() : JHZ1482xy (2'')

(1'') + (2'') : 29582yyZøZ

On retrouve que . SZ12,bgmr

c) Méthode graphique

Si l'on rapporte le plan à un repère Oij,,

ch 81
, les équations (1) et (2) sont en fait les équations cartésiennes de deux droites, que nous notons d et d. Résoudre le système revient à

déterminer le point d'intersection de ces deux droites. Représentons graphiquement les deux droites.

12 pbg dxy 1

23:HZ dxy

2

74:JZJ

I12,bg

ddI 12 d 1 d 2 x -3 1 5 y -5 2 9 x -2 1 4 y 4 2 0 1..22

3. Résolution générale par la méthode de Cramer

C'est le mathématicien suisse Gabriel Cramer (1704-1752) qui a introduit l'expression générale de la

solution d'un système linéaire de n équations à n inconnues. Voici sa méthode dans le cas . nZ2

1.3 p axbyc axbyc HZ HZ R S T 1 2

Ô=Eliminons d'abord y :

b'()ô1 : (1') abxbbycb''HZ

Jôb()2 : (2') JJZJabxbbycb''

(1') + (2') : ababxcbcb''''JZJbg On peut en déduire l'expression de x, à condition que . Alors : abab''JÖ0quotesdbs_dbs4.pdfusesText_7