[PDF] COURS TERMINALE S LES SUITES NUMERIQUES - Free



Previous PDF Next PDF







COURS TERMINALE S LES SUITES NUMERIQUES - Free

sont des suites adjacentes Théorème : Si les deux suites ( un) et ( vn) sont adjacentes, alors elles convergent vers la même limite Démonstration : la suite ( un) est croissante, donc pour tout entier naturel n, u0 un vn ; de même la suite ( vn) est décroissante, donc pour tout entier naturel n, un vn v0



Terminale S - Annales sur les suites - ChingAtome

Quelles formules a-t-on écrites dans les cellules C2 et B3 et copiées vers le bas pour ffiher les termes des suites u et v? 2 Déterminer, en justifiant, une expression de vn et un en fonction de n uniquement Exercice 6256 On considère la suite (un) définie par: u0 = 0 ; un+1 = un +2n+2 pour tout n2N 1 Calculer u1 et u2 2



Terminale ES – Chapitre III – Suites numériques

a) En prouvant que sa variation absolue est constante Preuve : • Si un+1 un est une constante égale à a, alors pour tout n, un+1 un=a ⇔ un+1=un+a Terminale ES-L – Chapitre III – Les suites numériques 3/8



Rappels sur les suites - plusdebonnesnotescom

Rappels sur les suites – Terminale Générale – Spé maths www plusdebonnesnotes com Page 2 ∀ ∈ℕ, + R On dit que la suite ( ) est décroissante si et seulement si : ∀ ∈ℕ, + Q Pour étudier les variations d’une suite, il existe trois méthodes à choisir judicieusement en fonction du



Math´ematique en Terminale ES Suites num´eriques et applications

Les suites num´eriques Terminale ES Section 4 Etude d’une suite arithm´etico-g´eom´etrique´ Les suites arithm´etico-g´eom´etriques sont des suites de la forme u n+1 = au n+bou` aet bsont deux nombres quelconques Leur ´etude th´eorique n’est pas au programme de TES mais elles sont largement propos´ees,



Chapitre 5 : Les suites numériques

Chapitre 5 : Les suites numériques Terminale S 4 SAES Guillaume Exemple : Soit ( ????)????∈ℕ la suite définie par ????=0,15 2−2 +1 On admet que cette suite est divergente vers +∞ Mettre en œuvre un algorithme permettant de déterminer au seuil à partir duquel ???? R104 IV )Limite finie d’une suite (???? ∈ℕ



Suites réelles - Mathématiques en ECS1

Ce chapitre regroupe toutes les dé nitions et propriétés que vous devez connaître sur les suites réelles Il sera également l'occasion de rappeler les techniques classiques étudiées en terminale pour étudier la nature des suites, et de les compléter 39



Terminale ES - Suites géométriques

II) Les deux formules de calculs de termes (????????) ????≥????0 est une suite géométrique de premier terme ???????? 0 et de raison ???? (????∈ℝ∗) Soit (????????)????≥???? , une suite, et ???? un entier naturel supérieur ou égal à ???? , On passe d’un terme au suivant en multipliant toujours par la même valeur

[PDF] les suites en ts

[PDF] Les suites et e

[PDF] Les suites et encadrement

[PDF] Les suites et la convergence

[PDF] Les suites et la récurrence

[PDF] Les suites et les banques ( Placement )

[PDF] Les suites et les fonctions

[PDF] Les suites et raisonnement par récurrence

[PDF] Les suites et récurrences

[PDF] Les suites excercice

[PDF] les suites exercice

[PDF] les suites exercices corrigés

[PDF] les suites exercices corrigés 1ere s

[PDF] les suites geometrique

[PDF] Les suites géométriques

COURS TERMINALE S LES SUITES NUMERIQUES

A. Notation - Définition

Définition : une suite numérique (un) est une application de ? dans ? .

On note (un) la suite de nombres u0, u1, u2,..., un, ... Le nombre un est le terme d'indice n (ou de rang n). uo est le

premier terme de la suite.

Exemples : un = 3n ( formule explicite en fonction de n ) , un = (1 + 5/100)n , un+1 = 3un + 2 et uo donné ( formule

récurrente : un terme de la suite s'écrit en fonction du ou des précédents ), un+2 = un + 1 + un et uo donné ...

B. Les suites arithmétiques

La suite (un) est une suite arithmétique s'il existe un nombre réel r tel que pour tout naturel n , un+1 = un + r.

Le réel r est appelé la raison

de la suite.

Propriétés : Pour tout entier naturel n , un = u0 + nr . Pour tous entiers naturels n et p , un = up + ( n - p ) r .

Somme de n termes consécutifs d'une suite arithmétique : S = n ? (demie somme des termes extrêmes) .

Exemples : u0 + u1 +...+ un = ?

k?0k?n u k = (n+1)u0?un

2 ; 1 + 2 + 3 + ... + n = n?n?1?

2 .

C. Les suites géométriques

La suite (un) est une suite géométrique s'il existe un nombre réel q tel que pour tout naturel n , un+1 = qun .

Le réel q est appelé la raison

de la suite.

Propriétés : Pour tout entier naturel n , un = u0 ? qn . Pour tous entiers naturels n et p , un = up ? q(n - p) .

Somme de n termes consécutifs d'une suite géométrique : S = premier terme ?

1?qn?1

1?q si q ? 1 ,

et S = n ? premier terme si q = 1.

Exemple : u0 + u1 +...+ un =?

k?0k?n u k= u0 1?qn?1 1?q.

D. Sens de variation d'une suite

Définition : Soit (un) une suite de nombre réels. La suite (un) est croissante si, pour tout entier naturel n, un+1 ? un .

La suite (un) est strictement croissante si, pour tout entier naturel n, un+1 > un . La suite (un) est décroissante si, pour tout entier naturel n, un+1 ? un . La suite (un) est strictement décroissante si, pour tout entier naturel n, un+1 < un .

Technique : a) on peut chercher à comparer un+1 - un à 0, ou si tous les termes de la suite sont strictement positifs,

comparer un?1 un à 1. Si pour tout entier naturel n, un+1 - un ? 0, alors un+1 ? un et la suite (un) est croissante.

Si pour tout entier naturel n, un+1 - un ? 0, alors un+1 ? un et la suite (un) est décroissante.

b) Si un = f(n) , alors les variations de f sur [0 ; +? [ donne les variations de (un).

Exemple : sens de variation d'une suite arithmétique : f(n) = u0 + nr , f est une fonction affine;

si r > 0, (un) est strictement croissante ; si r < 0, (un) est strictement décroissante ; si r = 0, (un) est constante.

E. Suites majorées, minorées, bornées

Définition : Soit (un) une suite de nombre réels. La suite (un) est majorée s'il existe un nombre réel M tel que,

pour tout entier naturel n, un ? M.

La suite (un) est minorée s'il existe un nombre réel m tel que, pour tout entier naturel n, un ? m.

La suite (un) est bornée si elle est à la fois majorée et minorée.

Technique : pour montrer qu'une suite est majorée ( ou minorée ), et si un = f(n) , alors on cherche à majorer ( ou à

minorer ) f(x) sur [0 ; +? [ .

Exemple: un = n

n?1. Cette suite est majorée par 1 et minorée par 0. Elle est donc bornée par 0 et 1.

F. Limite d'une suite

1. Définition : Une suite (un) est une suite convergente vers le nombre réel l si tout intervalle ouvert contenant l

contient tous les termes de la suite à partir d'un certain rang. Le nombre réel l est la limite de la suite (un), on écrit

lim n???un= l . Une suite est divergente si elle n'est pas convergente ( sa limite est infinie ou n'existe pas ).

2. Technique : si un = f(n) , alors la limite de la fonction f en +?? est la limite de la suite (un).

3. Théorèmes ( de comparaison ) : Si, à partir d'un certain rang, un ? vn et si lim

n???un= +? , alors lim n???vn= +? .

Si, à partir d'un certain rang,

?un?l?? vn et si lim n???vn= 0, alors lim n???un= l . Si, à partir d'un certain rang, un ? vn et si les deux suites convergent, alors lim n???un??lim n???vn.

Théorème des gendarmes:

Si, à partir d'un certain rang, un? vn? wn et si lim n???un=lim n???wn= l , alors lim n???vn= l .

Démonstration du théorème des gendarmes: La suite (un) converge vers l, donc tout intervalle ouvert contenant l

contient tous les termes de la suite (un) à partir d'un certain rang n1 . De même, la suite (wn) converge vers l, donc

tout intervalle ouvert contenant l contient tous les termes de la suite (wn) à partir d'un certain rang n2 . En prenant

n

0 = max(n1, n2), tout intervalle ouvert contenant l contient tous les termes de la suite (vn) à partir du rang n0

puisque un ? vn ? wn . Donc la suite (vn) converge vers l.

4. Exemples:

? Soit la suite (un) définie par un = n n?1. On a un = f(n) avec f(x) = x x?1. Comme lim x???f?x? = 1, alors lim n???un = 1 et cette suite converge vers 1.

? Soit la suite (un) définie par un = 2n . Pour tout entier naturel n, un > 0 et un + 1 > un , donc la suite est

strictement croissante, minorée par 1 et non majorée. lim n???un = +?, donc la suite est divergente. ? Soit la suite (un) définie par un =

2n???1?n

n?1. On considère alors les suites (vn) et (wn) définies par v n = 2n?1 n?1 et wn = 2n?1 n?1. Alors, pour tout entier naturel n, vn ? un ? wn . De plus, lim n???un= lim n???2n?1n?1= 2 et lim n???wn= lim n???2n?1n?1 = 2, donc par le théorème des gendarmes, lim n???un= 2.

5. Suites monotones convergentes:

Théorème

: Toute suite croissante et majorée converge. Toute suite décroissante et minorée converge.

Remarque: si la suite (un) est croissante et majorée par un réel M, alors la limite de (un) est inférieure ou égale à

M; cette limite n'es pas nécessairement M.

Exemple: La suite (un) définie par un + 1 =

?un?1 et u0 = 0 est croissante et majorée par 2; elle converge donc mais sa limite n'est pas 2 mais le nombre d'or 1??5

2. (A démontrer !)

Propriétés: Si (un) converge vers l, et si (un) est croissante, alors pour tout n de ? , un ? l.

Si (un) converge vers l, et si (un) est décroissante, alors pour tout n de ? , un ? l.

G. Représentation graphique d'une suite

Si la suite (un) a son terme général défini en fonction de n, on représente la suite dans un repère du plan, par un ensemble de points de coordonnées (n; un). Cette représentation graphique permet de visualiser les variations de la suite et éventuellement la convergence.

Exemple: un = n

n?1. Les sept premiers termes de la suite sont représentés ci-contre. On peut conjecturer que la suite est strictement croissante et qu'elle converge vers 1. Si la suite (un) est définie par récurrence, de la forme u n+1 = g(un), on représente la suite dans un repère du plan, en utilisant la représentation graphique de la fonction g et la droite d'équation y = x : On place u0 sur l'axe des abscisses, puis u1 comme image de u0 par la fonction g, puis on ramène u1 sur l'axe des abscisses en utilisant la droite d'équation y = x , puis u2 comme image de u1 par la fonction g, puis on ramène u2 sur l'axe des abscisses en utilisant la droite d'équation y = x , etc...

Exemple: un+1 = - 0,8un + 4 et u0 = 1.

Les sept premiers termes de la suite sont représentés ci-contre. On peut conjecturer que la suite n'est ni croissante, ni décroissante et qu'elle converge vers l, où l est solution de l'équation - 0,8x + 4 = x, soit l = 20/9.

H. Suites adjacentes

Définition: On dit que deux suites (un) et (vn) définies sur ??sont adjacentes si et seulement si les trois conditions

suivantes sont réalisées: ?(un) est croissante et (vn) est décroissante; ?Pour tout entier naturel n, un ? vn ; lim n????un?vn?= 0.

Exemple: un = 1 - 1

n?1 et vn = 1 + 1 n?1 sont des suites adjacentes.

Théorème: Si les deux suites (un) et (vn) sont adjacentes, alors elles convergent vers la même limite.

Démonstration: la suite (un) est croissante, donc pour tout entier naturel n, u0 ? un ? vn ; de même la suite (vn) est

décroissante, donc pour tout entier naturel n, un ? vn ? v0 . Donc la suite (un) est croissante et majorée par v0 ,

donc elle converge vers un réel l. La suite (vn) est décroissante et minorée par u0 , donc elle converge vers un réel

l'. La suite ( un ? vn ) converge donc vers l - l' . Or lim n????un?vn?= 0, donc l - l' = 0, et l = l'. De plus, pour tout entier naturel n, un ? l ? vn . Les deux suites de l'exemple précédent converge vers 1.quotesdbs_dbs46.pdfusesText_46