[PDF] Fonctions trigonométriques réciproques





Previous PDF Next PDF



Fonctions réciproques

Dèfinition 2 (Fonction Bijective) une fonction f est bijective sur un domaine (intervalle) si chaque fois que f (x1) = f (x2) alors x1 = x2. Remarque 1 



Université de Nice Année 2007-2008 Département de

La réciproque (ou l'inverse) d'une fonction x ?? f(x) est une fonction x ?? g(x) telle Mais d'apr`es la définition le point (f(x)x) n'est autre que.



2.2 Graphe dune fonction numérique – définition 2.3 Réciproque

Tracé du graphe de la fonction inverse f : x ?. 1 x définie sur Df = R?. 2.3 Réciproque composition des fonctions. Définition 16 (Réciproque).



Fonctions trigonométriques réciproques

Les fonctions sinus cosinus définies de r dans l'intervalle [-1 ;1] sont des applications surjectives par définition



Composition de fonctions dérivées successives et fonction réciproque

12 oct. 2017 3 Dérivée de la fonction réciproque ... Définition 1 : Fonction composée de f par g. Soit les fonctions f et g définies respectivement sur ...



II. Fonctions cyclométriques. 1. Introduction 2. La fonction réciproque

2. . 2. (pour que cette restriction soit injective). 5.1 Définition : arcsin : [-1



Analyse 2 FONCTIONS ELEMENTAIRES 1. Dérivée dune fonction

La fonction logarithme. Définition. La fonction logarithme naturel ln :]0?[? R est la fonction réciproque de la fonction exponentielle. On a donc.



1 Fonction réciproque

Définition 3 (Fonction injective surjective et bijective). Soit f une fonction bijective de D dans E. On appelle fonction réciproque de f



Chapitre 7 Fonctions réciproques et nouvelles fonctions usuelles

q. 7.3 Fonctions hyperboliques. 7.3.1 Fonction sinus cosinus et tangente hyperboliques. Définition 7.18 On définit les 



I Fonction réciproque dune fonction II Logarithme népérien

D'après le paragraphe précédent elle admet donc une fonction réciproque définie sur ]0; +?[. 1. Définition. La fonction logarithme népérien est la bijection 



[PDF] Fonctions réciproques

11 1 1 Fonction réciproque – Définition Il arrive souvent que pour une fonction donnée f on a besoin (si c'est possible) d'une autre fonction g telle



[PDF] 1) Fonction reciproque 2) Propriete de la fonction reciproque

f C I ? L'application qui a tout ( ) y f I ? associe son unique antecedent par la fonction f est appelée fonction reciproque de f On la note 1



[PDF] Fonctions réciproques

BTS MAI 2 Chap 8 : Fonctions réciproques I Définition Théor`eme 1 : Toute fonction f définie sur un intervalle I continue et strictement monotone sur



[PDF] Fonctions usuelles et réciproques Fiche de cours

L'application réciproque de ln est la fonction exponentielle c'est-à-dire ?x ? R ?y ?]0 +?[ exp(x) = y ?? x = ln y Définition 5 Fonction logarithme 



[PDF] La notion de fonction réciproque et son enseignement

Les mathématiciens de la fin du XXè siècle proposent des définitions de la notion de fonction réciproque en liaison avec la notion de bijection 



[PDF] Bijection Définition : Fonction réciproque Résumé

Bac Sc expérimentales – Résumé : Fonctions réciproques Définition : "Bijection" Théorème : Définition : "Fonction réciproque" Conséquence :



Fonction réciproque - Vikidia lencyclopédie des 8-13 ans

En analyse la fonction réciproque (ou bijection réciproque) d'une fonction bijective f est une fonction notée f-1 qui à partir du résultat obtenu en 



[PDF] Fonction réciproque dune fonction strictement monotone sur un

Soit f : I ?? R une fonction continue et strictement monotone définie sur un intervalle I ? R 63 1 Fonctions réciproques Définition 1 : Soient E 



[PDF] 1 Fonctions réciproques

Définition 2 Si f est bijective alors on note f?1 la fonction dite ”réciproque de f” allant de J vers I et définie pour tout y ? J par f?1(y) 

La réciproque (ou l'inverse) d'une fonction x ?? f(x) est une fonction x ?? g(x) telle que g(f(x)) = x pour tout x du domaine o`u la fonction f est définie.
  • Quelle est la fonction réciproque ?

    En analyse, la fonction réciproque (ou bijection réciproque) d'une fonction bijective f est une fonction notée f-1 qui, à partir du résultat obtenu en appliquant f sur un nombre, redonne ce nombre.
  • Quelle est la formule de la réciproque ?

    La relation réciproque d'une fonction f de X dans Y est la relation notée f-1, de Y dans X, telle que, pour tous les éléments du domaine de f, si y = f(x), alors x = f -1(y).
  • Comment déterminer l'expression de la fonction réciproque ?

    Deux fonctions f et g sont réciproques l'une de l'autre équivaut à : quel que soit a, si l'image de a par la fonction f est b, alors l'image de b par la fonction g est a. La notation de la réciproque de f est f ? 1 f^{-1} f?1f, start superscript, minus, 1, end superscript.
  • La propriété réciproque est l'énoncé obtenue en inversant les propositions 1 et 2 d'une propriété directe. Elle doit être vraie et démontrée. de la propriété réciproque. si la proposition 2 de la propriété n'est pas vérifiée alors la proposition 1 n'est pas vérifiée.
1

Fonctions trigonométriques réciproques

1 Définitions

Les fonctions sinus, cosinus définies de dans l'intervalle [-1 ;1] sont des applications surjectives par définition,

c'est à dire : y [-1 ;1], x tel que sin(x) = y et cos(x) = y .

La fonction tangente définie de - {x x =

2 + k , k } dans est une application surjective par définition .

A condition de restreindre judicieusement leurs ensembles de définition, on peut définir des fonctions qui sont

injectives et par conséquent bijectives. Pour la fonction sinus, on restreint son domaine de définition à l'intervalle [- 2 2 ] et on a : sin : [- 2 2 ] [-1 ;1] x sin(x) Alors cette fonction " sin " est bijective et on peut définir sa fonction réciproque appelée arc sinus ainsi : arcsin : [-1;1] [- 2 2 x arcsin(x) avec l'équivalence : y = arcsin(x) x = sin(y)

La représentation graphique

1 f d'une fonction f -1 réciproque d'une applicatio bijective est toujours symétrique de f par rapport à la bissectrice d du premier et troisième quadrant d'équation d : y = x . 1 f f 2 Pour la fonction cosinus, on restreint son domaine de définition à l'intervalle [0 ;] et on a : cos : [0 ;] [-1 ;1] x cos(x) Alors cette fonction "cos" est bijective et on peut définir sa fonction réciproque appelée arc cosinus ainsi : arccos : [-1;1] [0 ;] x arccos(x) avec l'équivalence : y = arccos(x) x = cos(y) Pour la fonction tangente, on restreint son domaine de définition à l'intervalle ]- 2 2 [ et on a : tan : ]- 2 2 x tan(x) Alors cette fonction "tan" est bijective et on peut définir sa fonction réciproque appelée arc tangente ainsi : arctan : ]- 2 2 x arctan(x) avec l'équivalence : y = arctan(x) x = tan(y)

Exemples : arcsin(1) =

2 , car sin( 2 ) = 1 arccos( 21
3 , car cos( 3 21
; arctan(-1) = - 4 , car tan(- 4 ) = -1

2 Remarques :

1) Soit f : A B une application bijective et f

-1 : B A sa réciproque avec y = f -1 (x) x = f(y) .

On a alors : f

of -1 = id B et f -1 of = id A , c'est à dire : xB , : fof -1 (x)= id B (x) = x et yA , : f -1 of(y)= id A (y) = y . Ainsi : x [-1 ;1] , sin[arcsin(x)] = x et cos[arccos(x)] = x y [- 2 2 ] , arcsin[sin(y)] = y et y [0 ;] , arccos[cos(y)] = y et x , tan[arctan(x)] = x y ]- 2 2 [ , arctan[tan(y)] = y .

2) On a aussi : x[-1 ;1] , arcsin(-x) = -arcsin(x) et x

, arctan(-x) = -arctan(x) ; les fonctions arcsin et arctan sont donc impaires.( car sin et tan sont impaires) preuve : y = arcsin(-x) -x = sin(y) x = -sin(y) x = sin(-y) -y = arcsin(x) y = -arcsin(x) y = cos(x) y = arctan(x) y = tan(x) y = arccos(x) 3

3 Dérivées

On a démontré le théorème de dérivation d'une fonction réciproque d'une application bijective :

Si f est une fonction bijective et continue sur un intervalle ouvert contenant y 0 et si f est dérivable en y 0 et si f '(y 0 ) 0 , alors la bijection réciproque f -1 est dérivable en x 0 = f(y 0 ) et on a (f -1 )'(x 0 )('f1 0 y.

En posant y = f

-1 (x) = arcsin(x) et x = f(y) = sin(y) on obtient : (f -1 )'(x) = [arcsin(x)]' = x- 1 1 * (x))cos(arcsin1 cosy1 (siny)'1 )y('f1 2 , x ]-1 ;1[ .(* cf. exercice 3a)

Exercices : démontrer que : [arccos(x)]' =

x- 1 1- 2 x ]-1 ;1[ et [arctan(x)]' = 2 x 1 1 , x . remarque : la fonction arcsin n'est pas dérivable en x = -1 et en x = 1 ; calculons f d (1) et f ' g (-1) : f d (1) =

01 x- 1 1 lim

21x
et f g (-1) =

01 x- 1 1 lim

21x
interprétation géométrique : les tangentes au graphique de la fonction arcsin en 1 x et en 1 x sont verticales : 4

4 Exercices

1) Démontrer : x [-1 ;1] , arcsin(x) + arccos(x) =

2

2) Calculer le domaine de définition des fonctions f

i définies par : a) y = f 1 (x) = arcsin

3 x21 x

b) y = f 2 (x) =

1xarctanx

2 c) y = f 3 (x) = arccos 2 x1x2

3) Démontrer :

a) x [-1 ;1] , cos[arcsin(x)] = x 1 2 et sin[arccos(x)] = x 1 2 b) x ]-1 ;1[ , tan[arcsin(x)] = x- 1 x 2 c) x [-1 ;1]-{0} , tan(arccos(x)] = x x- 1 2 d) x , sin[arctan(x)] = x 1 x 2 et cos[arctan(x)] = x 1 1 2

4) Calculer les dérivées des fonctions f

i définies par : a) y = f 1 (x) = arcsin (2x-3) b) y = f 2 (x) = arccos(x 2 c) y = f 3 (x) = arctan (3x 2 ) d) y = f 4 (x) = arctan x1x1

5) Calculer :

a) dx x11 2 b) dx xa1 22
( poser t = ax ) c) dx x 1 1 2 d) dx x 1 x 22
( poser t = arccos(x) x = cos(t) ) e) dx x 1 x 2 ( poser t = arctan(x) x = tan(t) ) f) dx arcsin(x) g) dx arccos(x) h) dx arccos(2x) i) dx arctan(x) x j) dx x- 1 2 k) dx x16 25 1 2

6) a) Calculer l'aire de la surface comprise entre le graphique de la fonctio définie par y = f(x) = arcsin(x),

l'axe des abscisses et les verticales x = 0 et x = 1 . b) Même question pour la fonction g définie par y = g(x) = arccos(x) .quotesdbs_dbs41.pdfusesText_41
[PDF] réciproque d'une fonction racine carré

[PDF] pierre et le loup cm2

[PDF] calcul fonction reciproque en ligne

[PDF] fonction réciproque dérivée

[PDF] activité réciproque du théorème de pythagore

[PDF] musique de film youtube

[PDF] pythagore 3eme exercices

[PDF] activité 2nd degré

[PDF] recherche musique de film

[PDF] musique de film compositeur

[PDF] redaction thales

[PDF] l'influence de la musique sur les capacités cognitives

[PDF] bienfaits de la musique sur le cerveau

[PDF] musique et éducation

[PDF] les bénéfices de la musique