[PDF] Suites numériques 8 nov. 2011 La notion





Previous PDF Next PDF



Exercices de mathématiques Exercices de mathématiques

Exercice 1 : Suites numériques On considère la suite définie pour tout entier naturel n par. ; a) Montrer que est une suite géométrique de raison 09.



[PDF] suites arithmetiques et suites geometriques

19 juin 2011 Suites arithmétiques. 1) Définition. Exemple : Considérons une suite ... 9 7 9. 9 n n u u n n n n. + -. = -. + - +. = -. - - +. = -. ( )2. 2. 2. 2.



SUITES ARITHMÉTIQUES ET SUITES GÉOMÉTRIQUES

Exemple : On a représenté ci-dessous la suite de raison –05 et de premier terme 4. Page 5. Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr.



Rapport du jury

Suites numériques. Limites. 29. Suites définies par récurrence un+1=f(un) mathématiques complémentaires (2020) Terminale spécialité (2020)



Suites 1 Convergence

Exercice 9. Déterminer les limites lorsque n tend vers l'infini des suites ci-dessous ; pour chacune essayer de préciser en quelques mots la méthode employée.



SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES

Suites arithmétiques. 1) Définition. Exemple : Considérons une suite numérique (un) est une suite arithmétique de raison -9. 2). ( )2. 2. 2. 2. 1. 1. 3. 3. 2 ...



Recueil dannales en Mathématiques Terminale S – Enseignement

29 avr. 2008 Étudier la monotonie de la suite u. Frédéric Demoulin. Page 7. Page 9. Annales Terminale S. Suites numériques ... Déduire des deux questions ...



Mathématiques : du lycée aux CPGE scientifiques

. Les suites arithmético-géométriques qui généralisent simultanément les suites arithmétiques f) Déduire des questions c) et e) la limite de la suite (ne− ...



mathématiques au cycle 4 - motivation engagement

https://maths.ac-creteil.fr/IMG/pdf/brochure_cyc60fb.pdf



Programme de mathématiques de première générale

pour ceux qui choisiront les mathématiques comme enseignement de spécialité en terminale mathématiques telles que les suites numériques les tableaux de ...



Exercices de mathématiques

Ressources pour la classe de terminale Exercice 2 : Suites numériques . ... Ce document propose des exercices conformes aux programmes de Terminale ...



Suites 1 Convergence

Exercice 9. Déterminer les limites lorsque n tend vers l'infini des suites ci-dessous; pour chacune essayer de préciser en.



SUITES ARITHMÉTIQUES ET SUITES GÉOMÉTRIQUES

Représentation graphique. Remarque : Les points de la représentation graphique sont alignés. Page 4. Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.



QCM DE MATHÉMATIQUES 2021–2022

Il y a une rupture importante entre la terminale et le cycle préparatoire J'identifie et je commence par les exercices ou les questions que je pense ...





Exercices de mathématiques pour la classe terminale - 2e partie

Déterminer la limite de la suite ( ) . 4) Dans cette question on prend = 0



Exercices de mathématiques pour la classe terminale - 2e partie

Toutefois dans le cadre d'une évaluation des compétences



COURS TERMINALE S LES SUITES NUMERIQUES

TERMINALE S. LES SUITES NUMERIQUES. A. Notation - Définition. Définition : une suite numérique (un) est une application de dans .



Terminale Option mathématiques complémentaires Programme 2020

conjecturé à la question 2. 1 : Suites numériques : exercices - page 9 ... Les théorèmes de comparaison non détaillés en maths complémentaires sont.



Suites numériques

8 nov. 2011 La notion de convergence a une définition mathématique que vous devez ... 9. ? Si la suite (un) converge vers l



Terminale générale - Suites numériques - Exercices - Devoirs

Suites numériques – Exercices - Devoirs Exercice 1 corrigé disponible 1 Soit (un) la suite définie par u0 = 2 et pour tout entier n un+1 = 5un + 4 Montrer que pour tout entier n un >0 2 Démontrer que pour tout n entier 4n+5 est un multiple de 3 3 Soit (un) la suite définie par u0 = -3 et pour tout entier n un+1 = 5 – 4un



Suites numériques – Fiche de cours

Une suite (un) a pour limite +? si ?n 0?N à partir duquel : ? A>0 un?] A ;+?[ Une suite (un) a pour limite -? si ?n 0?N à partir duquel : ? A>0 un?]?? ; A [ lim un=±? n?? on dit que (un) diverge lim n=lim n2=lim n3=lim ?n=? x?? x?? x?? x?? 3 3 Limites par encadrement ou comparaison

Université Joseph Fourier, Grenoble Maths en Ligne

Suites numériques

Bernard Ycart

Vous savez déjà étudier une suite et calculer sa limite. La nouveauté réside dans la rigueur. La notion de convergence a une définition mathématique, que vous devez connaître et savoir appliquer. Ne vous contentez pas de comprendre les théorèmes, ils sont pour la plupart très naturels; travaillez sur les démontrations. L"idéal serait que vous soyez capables de les refaire.

Table des matières

1 Cours 1

1.1 Vocabulaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Opérations sur les limites . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Convergence des suites monotones . . . . . . . . . . . . . . . . . . . . . 8

1.5 Comparaison de suites . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.6 Suites récurrentes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.7 Suites de Cauchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.8 Suites à valeurs complexes . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Entraînement 20

2.1 Vrai ou faux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 QCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Devoir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 Corrigé du devoir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Compléments 37

3.1 Les lapins de Fibonacci . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Limite sup et limite inf . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Dichotomies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Fractions continues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5 Applications contractantes . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.6 Méthode de Newton . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

8 novembre 2011

Maths en LigneSuites numériquesUJF Grenoble1 Cours

1.1 Vocabulaire

Définition 1.SoitEun ensemble. On appellesuite à valeurs dansEune application deNdansE. L"ensemble des suites à valeurs dansEest notéEN. Dans ce chapitre, nous nous préoccuperons surtout des suites à valeurs dansR(nous dirons aussi suites de réels) et très peu des suites à valeurs dansC(suites de complexes). Une suite à valeurs dansRsera typiquement notée(un)n?Nou simplement(un)quand il n"y a pas d"ambiguïté. Les entiersnsont lesindicesde la suite et leurs imagesunsont lestermesde la suite. La suite(un)n?Nest un objet différent de l"ensemble{un, n?N}. En particulier une suite aura toujours une infinité de termes, même si ces termes ne prennent qu"un nombre fini de valeurs différentes. Par exemple, pourun= (-1)n, la suite est(un) = (1,-1,1,-1,1,-1,...), et l"ensemble{un, n?N}est l"ensemble {-1,1}. Il existe deux manières de définir une suite de réels à partir d"une fonction : •définition explicite : ?n?N, un=f(n), oùfest une fonction deRdansR. Par exemple :

1.?n?N, un=n

2.?n?N, un= 1/(n+ 1)

3.?n?N, un= 2-n.

•définition par récurrence : u

0?R,et?n?N, un+1=F(un),

oùFest une fonction deRdansR. Les mêmes exemples peuvent être définis par :

1.u0= 0et?n?N, un+1=un+ 1

2.u0= 1et?n?N, un+1=un/(un+ 1)

3.u0= 1et?n?N, un+1=un/2.

Voici deux exemples génériques.

Définition 2.

1. Soitaun réel. On appellesuite arithmétiquede raisonaune suite définie par

u 0?Ret ?n?N, un+1=un+a .

2. Soitrun réel. On appellesuite géométriquede raisonrune suite définie par

u 0?Ret ?n?N, un+1=run. 1

Maths en LigneSuites numériquesUJF GrenobleOn vérifie facilement par récurrence qu"une suite arithmétique de raisonaa pour

terme généralun=u0+na. De même, une suite géométrique de raisonra pour terme généralun=u0rn. Définition 3.Soit(un)n?Nune suite de réels. On dit que la suite(un)est : •constantesi?n?N, un+1=un; •croissantesi?n?N, un+1>un; •décroissantesi?n?N, un+16un; •strictement croissantesi?n?N, un+1> un; •strictement décroissantesi?n?N, un+1< un; •monotonesi elle est croissante ou décroissante •majoréesi{un,n?N}est majoré; •minoréesi{un,n?N}est minoré; •bornéesi{un,n?N}est borné; •périodiquesi?p?N?,?n?N, un+p=un. Il arrive qu"une suite ne soit définie que sur une partie deN: par exemple(1/n)n?N?. On sera également amené à réduire la suite aux indices au-delà d"un certain entiern0: (un)n>n0. L"expression " à partir d"un certain rang » reviendra souvent dans ce qui suit. Dire que la suite(un)n?Npossède la propriétéPà partir d"un certain rangsignifie que la suite(un)n>n0la possède pour un certainn0. On dit aussi "Pest vraie pournassez grand ». Voici quelques exemples. Définition 4.Soit(un)n?Nune suite de réels. On dit que la suite(un)est •constante à partir d"un certain rang (on dit aussi stationnaire) si?n0?N,?n> n

0, un+1=un;

•croissante à partir d"un certain rang si?n0?N,?n>n0, un+1>un; •périodique à partir d"un certain rang si?n0?N,?p?N?,?n>n0, un+p= u n; Par exemple, la suite(?4/(n+ 1)?)n?Nest constante à partir du rangn0= 4. La suite des décimales de1/90est constante à partir du rangn0= 2. La suite(|n-5|)n?N est croissante à partir du rangn0= 5. La suite des décimales de53/2475est périodique, de périodep= 2à partir du rangn0= 3. Quel que soit le nombre rationnelx, la suite des décimales dexest périodique à partir d"un certain rang. Si la suite(un)n?Nest " majorée à partir d"un certain rang », alors elle est majorée tout court. En effet siun6Mpour toutn>n0, alors pour tout entiern?N, u n6max{u0,u1,...,un0-1,M}.

De même une suite minorée à partir d"un certain rang est minorée, une suite bornée à

partir d"un certain rang est bornée. Les opérations sur les réels s"étendent aux suites en des opérations terme à terme. •addition :(un) + (vn) = (un+vn), 2 Maths en LigneSuites numériquesUJF Grenoble•multiplication :(un)(vn) = (unvn), •multiplication par un réel :λ(un) = (λun), •comparaison :(un)6(vn)?? ?n?N, un6vn. L"addition a les mêmes propriétés que celle des réels :RNmuni de l"addition est un groupe commutatif. Muni de l"addition et de la multiplication par un réel, c"est un espace vectoriel. Cependant, le produit de deux suites peut être nul sans que les deux suites le soient :RNmuni de l"addition et de la mutiplication est un anneau commutatif non intègre. Etant donnée une suite(un), on appellesuite extraiteousous-suite, une suite formée de certains termes de(un), c"est-à-dire une suite de la forme(vk) = (u?(k)), où?est une application strictement croissante deNdansN. Par exemple si(un)est la suite géométrique((-2)n), et?(k) = 2k, alors(vk) = (4k): on a extrait de la suite(un)la suite des termes d"indice pair.

1.2 Convergence

On dit que la suite(un)convergevers un réell(sa limite) si tout intervalle ouvert contenantl, contient aussi tous lesunpournassez grand. Définition 5.Soit(un)n?Nune suite de réels etlun réel. On dit que la suite(un) converge versl, (outend versl, oua pour limitel) si : ?ε >0,?n0?N,?n>n0,|un-l|6ε .

On notera :

lim n→∞un=lou bienun----→n→+∞l . Autrement dit, tout intervalle ouvert centré enlcontient tous les termes de la suite à partir d"un certain rang. Observons que le rangn0à partir duquel tous les termes de la suite restent dans l"intervalle[l-ε,l+ε], dépend deε. La figure 1 représente les50 premiers termes de la suite(un) = (1 + sin(n)/n)n?N?. La limite estl= 1. On a : |un-l|=? ????sin(n)n ????61n Fixonsε >0(sur la figureε= 0.05). Posonsn0=?1/ε?+ 1(n0= 21pourε= 0.05). Pour toutn>n0,1/n < ε, donc|un-l|< ε. Sur la figure 1, on constate en fait que u n?[0.95,1.05]pourn>18. On étend la notion de convergence aux limites infinies de la façon suivante.

Définition 6.Soit(un)une suite de réels.

1. On dit que(un)tend vers+∞si

?A?R,?n0?N,?n>n0, un>A . 3 Maths en LigneSuites numériquesUJF Grenoble0 5 10 15 20 25 30 35 40 45 50

0.00.20.40.60.81.01.21.41.61.82.0.

u n Convergence de 1+sin(n)/n

¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨Figure1 -Convergence de la suite1 + sin(n)/n.

2. On dit que(un)tend vers-∞si

?A?R,?n0?N,?n>n0, un6A . Il est commode de pouvoir dire qu"une suite " tend vers l"infini », mais cela induit une certaine ambiguïté sur la notion de convergence. De même qu"il faut voirεcomme un " petit » réel (proche de0), dans la définition

6 il faut comprendreAcomme grand (proche de l"infini). Une suite tend vers+∞si

ses termes restent au-dessus de n"importe quelle quantité, à partir d"un certain rang.

Voici quelques exemples classiques.

•Suites arithmétiques :(un) = (u0+an)

1. Sia >0,(un)tend vers+∞.

2. Sia= 0,(un)est constante (tend versu0).

3. Sia <0,(un)tend vers-∞.

•Suites géométriques :(un) = (u0rn)

1. Siu0= 0,(un)est constante (tend vers0).

2. Sir6-1, etu0?= 0,(un)ne converge pas.

3. Si-1< r <1,(un)tend vers0.

4. Sir= 1,(un)est constante (tend versu0).

5. Sir >1etu0>0,(un)tend vers+∞.

6. Sir >1etu0<0,(un)tend vers-∞.

•Suites de Riemann :(un) = (nα) 4 Maths en LigneSuites numériquesUJF Grenoble1. Siα >0,(un)tend vers+∞.

2. Siα= 0,(un)est constante (tend vers1).

3. Siα <0,(un)tend vers0.

Pour bien comprendre la notion de convergence, nous allons en étudier quelques consé- quences faciles, rassemblées dans la proposition suivante.

Proposition 1.Soit(un)une suite de réels :

1. si(un)converge, alors sa limite est unique;

2. si(un)converge vers une limite finie, alors(un)est bornée;

3. si pour toutn,un?Net si(un)converge vers une limite finie, alors(un)est

constante à partir d"un certain rang;

4. si(un)converge versl, alors toute suite extraite de(un)converge versl;

5. si les deux suites extraites(u2k)k?Net(u2k+1)k?Nconvergent vers la même limite

l(finie ou infinie), alors(un)n?Nconverge versl. Démonstration: Les démonstrations des 5 points se ressemblent.

1. Supposons que(un)vérifie la définition 5 pour deux réelsletl?distincts. Posons

ε=|l-l?|/3. Alors les intervalles[l-ε,l+ε]et[l?-ε,l?+ε]sont disjoints. À partir d"un certain rang, lesundevraient appartenir aux deux à la fois : c"est impossible.

2. Fixonsε >0, etn0tel queunreste dans l"intervalle[l-ε,l+ε]pour toutn>n0.

Alors :

?n?Nun6max{u0,u1,...,un0-1,l+ε}, et ?n?Nun>min{u0,u1,...,un0-1,l-ε}.

3. Soitlla limite. Siln"était pas un entier, pourεsuffisamment petit, l"intervalle

[l-ε,l+ε]ne contiendrait aucun entier, donc aucun desun. Doncldoit être un entier. Posonsε= 1/2. L"intervalle[l-ε,l+ε]ne contient qu"un seul entier,l. Comme à partir d"un certain rang tous lesunsont dans cet intervalle, et qu"ils sont tous entiers, ils sont tous égaux àl.

4. Soit(u?(k))k?Nune suite extraite de(un)n?N. Comme?est strictement croissante,

quotesdbs_dbs42.pdfusesText_42
[PDF] 90 poeme classique et contemporain PDF Cours,Exercices ,Examens

[PDF] 90 poeme classique et contemporain anthologie PDF Cours,Exercices ,Examens

[PDF] 90 poeme classique et contemporain fiche de lecture PDF Cours,Exercices ,Examens

[PDF] 90 poèmes classiques et contemporains 1ère Français

[PDF] 90 poèmes classiques et contemporains analyse PDF Cours,Exercices ,Examens

[PDF] 90 poèmes classiques et contemporains anthologie PDF Cours,Exercices ,Examens

[PDF] 90 poèmes classiques et contemporains citation PDF Cours,Exercices ,Examens

[PDF] 90 poèmes classiques et contemporains lecture en ligne PDF Cours,Exercices ,Examens

[PDF] 90 poèmes classiques et contemporains lire en ligne PDF Cours,Exercices ,Examens

[PDF] 90 poèmes classiques et contemporains liste PDF Cours,Exercices ,Examens

[PDF] 90 poèmes classiques et contemporains pdf PDF Cours,Exercices ,Examens

[PDF] 90 poèmes classiques et contemporains questionnaire PDF Cours,Exercices ,Examens

[PDF] 90 poèmes classiques et contemporains resume PDF Cours,Exercices ,Examens

[PDF] 90 poèmes classiques et contemporains thèmes PDF Cours,Exercices ,Examens

[PDF] 91 tetes et 324 pattes PDF Cours,Exercices ,Examens