[PDF] COURS TERMINALE S LES SUITES NUMERIQUES





Previous PDF Next PDF



Exercices de mathématiques Exercices de mathématiques

Exercice 1 : Suites numériques On considère la suite définie pour tout entier naturel n par. ; a) Montrer que est une suite géométrique de raison 09.



[PDF] suites arithmetiques et suites geometriques

19 juin 2011 Suites arithmétiques. 1) Définition. Exemple : Considérons une suite ... 9 7 9. 9 n n u u n n n n. + -. = -. + - +. = -. - - +. = -. ( )2. 2. 2. 2.



SUITES ARITHMÉTIQUES ET SUITES GÉOMÉTRIQUES

Exemple : On a représenté ci-dessous la suite de raison –05 et de premier terme 4. Page 5. Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr.



Rapport du jury

Suites numériques. Limites. 29. Suites définies par récurrence un+1=f(un) mathématiques complémentaires (2020) Terminale spécialité (2020)



Suites 1 Convergence

Exercice 9. Déterminer les limites lorsque n tend vers l'infini des suites ci-dessous ; pour chacune essayer de préciser en quelques mots la méthode employée.



SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES

Suites arithmétiques. 1) Définition. Exemple : Considérons une suite numérique (un) est une suite arithmétique de raison -9. 2). ( )2. 2. 2. 2. 1. 1. 3. 3. 2 ...



Recueil dannales en Mathématiques Terminale S – Enseignement

29 avr. 2008 Étudier la monotonie de la suite u. Frédéric Demoulin. Page 7. Page 9. Annales Terminale S. Suites numériques ... Déduire des deux questions ...



Mathématiques : du lycée aux CPGE scientifiques

. Les suites arithmético-géométriques qui généralisent simultanément les suites arithmétiques f) Déduire des questions c) et e) la limite de la suite (ne− ...



mathématiques au cycle 4 - motivation engagement

https://maths.ac-creteil.fr/IMG/pdf/brochure_cyc60fb.pdf



Programme de mathématiques de première générale

pour ceux qui choisiront les mathématiques comme enseignement de spécialité en terminale mathématiques telles que les suites numériques les tableaux de ...



Exercices de mathématiques

Ressources pour la classe de terminale Exercice 2 : Suites numériques . ... Ce document propose des exercices conformes aux programmes de Terminale ...



Suites 1 Convergence

Exercice 9. Déterminer les limites lorsque n tend vers l'infini des suites ci-dessous; pour chacune essayer de préciser en.



SUITES ARITHMÉTIQUES ET SUITES GÉOMÉTRIQUES

Représentation graphique. Remarque : Les points de la représentation graphique sont alignés. Page 4. Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.



QCM DE MATHÉMATIQUES 2021–2022

Il y a une rupture importante entre la terminale et le cycle préparatoire J'identifie et je commence par les exercices ou les questions que je pense ...





Exercices de mathématiques pour la classe terminale - 2e partie

Déterminer la limite de la suite ( ) . 4) Dans cette question on prend = 0



Exercices de mathématiques pour la classe terminale - 2e partie

Toutefois dans le cadre d'une évaluation des compétences



COURS TERMINALE S LES SUITES NUMERIQUES

TERMINALE S. LES SUITES NUMERIQUES. A. Notation - Définition. Définition : une suite numérique (un) est une application de dans .



Terminale Option mathématiques complémentaires Programme 2020

conjecturé à la question 2. 1 : Suites numériques : exercices - page 9 ... Les théorèmes de comparaison non détaillés en maths complémentaires sont.



Suites numériques

8 nov. 2011 La notion de convergence a une définition mathématique que vous devez ... 9. ? Si la suite (un) converge vers l



Terminale générale - Suites numériques - Exercices - Devoirs

Suites numériques – Exercices - Devoirs Exercice 1 corrigé disponible 1 Soit (un) la suite définie par u0 = 2 et pour tout entier n un+1 = 5un + 4 Montrer que pour tout entier n un >0 2 Démontrer que pour tout n entier 4n+5 est un multiple de 3 3 Soit (un) la suite définie par u0 = -3 et pour tout entier n un+1 = 5 – 4un



Suites numériques – Fiche de cours

Une suite (un) a pour limite +? si ?n 0?N à partir duquel : ? A>0 un?] A ;+?[ Une suite (un) a pour limite -? si ?n 0?N à partir duquel : ? A>0 un?]?? ; A [ lim un=±? n?? on dit que (un) diverge lim n=lim n2=lim n3=lim ?n=? x?? x?? x?? x?? 3 3 Limites par encadrement ou comparaison

COURS TERMINALE S LES SUITES NUMERIQUES

A. Notation - Définition

Définition : une suite numérique (un) est une application de ? dans ? .

On note (un) la suite de nombres u0, u1, u2,..., un, ... Le nombre un est le terme d'indice n (ou de rang n). uo est le

premier terme de la suite.

Exemples : un = 3n ( formule explicite en fonction de n ) , un = (1 + 5/100)n , un+1 = 3un + 2 et uo donné ( formule

récurrente : un terme de la suite s'écrit en fonction du ou des précédents ), un+2 = un + 1 + un et uo donné ...

B. Les suites arithmétiques

La suite (un) est une suite arithmétique s'il existe un nombre réel r tel que pour tout naturel n , un+1 = un + r.

Le réel r est appelé la raison

de la suite.

Propriétés : Pour tout entier naturel n , un = u0 + nr . Pour tous entiers naturels n et p , un = up + ( n - p ) r .

Somme de n termes consécutifs d'une suite arithmétique : S = n ? (demie somme des termes extrêmes) .

Exemples : u0 + u1 +...+ un = ?

k?0k?n u k = (n+1)u0?un

2 ; 1 + 2 + 3 + ... + n = n?n?1?

2 .

C. Les suites géométriques

La suite (un) est une suite géométrique s'il existe un nombre réel q tel que pour tout naturel n , un+1 = qun .

Le réel q est appelé la raison

de la suite.

Propriétés : Pour tout entier naturel n , un = u0 ? qn . Pour tous entiers naturels n et p , un = up ? q(n - p) .

Somme de n termes consécutifs d'une suite géométrique : S = premier terme ?

1?qn?1

1?q si q ? 1 ,

et S = n ? premier terme si q = 1.

Exemple : u0 + u1 +...+ un =?

k?0k?n u k= u0 1?qn?1 1?q.

D. Sens de variation d'une suite

Définition : Soit (un) une suite de nombre réels. La suite (un) est croissante si, pour tout entier naturel n, un+1 ? un .

La suite (un) est strictement croissante si, pour tout entier naturel n, un+1 > un . La suite (un) est décroissante si, pour tout entier naturel n, un+1 ? un . La suite (un) est strictement décroissante si, pour tout entier naturel n, un+1 < un .

Technique : a) on peut chercher à comparer un+1 - un à 0, ou si tous les termes de la suite sont strictement positifs,

comparer un?1 un à 1. Si pour tout entier naturel n, un+1 - un ? 0, alors un+1 ? un et la suite (un) est croissante.

Si pour tout entier naturel n, un+1 - un ? 0, alors un+1 ? un et la suite (un) est décroissante.

b) Si un = f(n) , alors les variations de f sur [0 ; +? [ donne les variations de (un).

Exemple : sens de variation d'une suite arithmétique : f(n) = u0 + nr , f est une fonction affine;

si r > 0, (un) est strictement croissante ; si r < 0, (un) est strictement décroissante ; si r = 0, (un) est constante.

E. Suites majorées, minorées, bornées

Définition : Soit (un) une suite de nombre réels. La suite (un) est majorée s'il existe un nombre réel M tel que,

pour tout entier naturel n, un ? M.

La suite (un) est minorée s'il existe un nombre réel m tel que, pour tout entier naturel n, un ? m.

La suite (un) est bornée si elle est à la fois majorée et minorée.

Technique : pour montrer qu'une suite est majorée ( ou minorée ), et si un = f(n) , alors on cherche à majorer ( ou à

minorer ) f(x) sur [0 ; +? [ .

Exemple: un = n

n?1. Cette suite est majorée par 1 et minorée par 0. Elle est donc bornée par 0 et 1.

F. Limite d'une suite

1. Définition : Une suite (un) est une suite convergente vers le nombre réel l si tout intervalle ouvert contenant l

contient tous les termes de la suite à partir d'un certain rang. Le nombre réel l est la limite de la suite (un), on écrit

lim n???un= l . Une suite est divergente si elle n'est pas convergente ( sa limite est infinie ou n'existe pas ).

2. Technique : si un = f(n) , alors la limite de la fonction f en +?? est la limite de la suite (un).

3. Théorèmes ( de comparaison ) : Si, à partir d'un certain rang, un ? vn et si lim

n???un= +? , alors lim n???vn= +? .

Si, à partir d'un certain rang,

?un?l?? vn et si lim n???vn= 0, alors lim n???un= l . Si, à partir d'un certain rang, un ? vn et si les deux suites convergent, alors lim n???un??lim n???vn.

Théorème des gendarmes:

Si, à partir d'un certain rang, un? vn? wn et si lim n???un=lim n???wn= l , alors lim n???vn= l .

Démonstration du théorème des gendarmes: La suite (un) converge vers l, donc tout intervalle ouvert contenant l

contient tous les termes de la suite (un) à partir d'un certain rang n1 . De même, la suite (wn) converge vers l, donc

tout intervalle ouvert contenant l contient tous les termes de la suite (wn) à partir d'un certain rang n2 . En prenant

n

0 = max(n1, n2), tout intervalle ouvert contenant l contient tous les termes de la suite (vn) à partir du rang n0

puisque un ? vn ? wn . Donc la suite (vn) converge vers l.

4. Exemples:

? Soit la suite (un) définie par un = n n?1. On a un = f(n) avec f(x) = x x?1. Comme lim x???f?x? = 1, alors lim n???un = 1 et cette suite converge vers 1.

? Soit la suite (un) définie par un = 2n . Pour tout entier naturel n, un > 0 et un + 1 > un , donc la suite est

strictement croissante, minorée par 1 et non majorée. lim n???un = +?, donc la suite est divergente. ? Soit la suite (un) définie par un =

2n???1?n

n?1. On considère alors les suites (vn) et (wn) définies par v n = 2n?1 n?1 et wn = 2n?1 n?1. Alors, pour tout entier naturel n, vn ? un ? wn . De plus, lim n???un= lim n???2n?1n?1= 2 et lim n???wn= lim n???2n?1n?1 = 2, donc par le théorème des gendarmes, lim n???un= 2.

5. Suites monotones convergentes:

Théorème

: Toute suite croissante et majorée converge. Toute suite décroissante et minorée converge.

Remarque: si la suite (un) est croissante et majorée par un réel M, alors la limite de (un) est inférieure ou égale à

M; cette limite n'es pas nécessairement M.

Exemple: La suite (un) définie par un + 1 =

?un?1 et u0 = 0 est croissante et majorée par 2; elle converge donc mais sa limite n'est pas 2 mais le nombre d'or 1??5

2. (A démontrer !)

Propriétés: Si (un) converge vers l, et si (un) est croissante, alors pour tout n de ? , un ? l.

Si (un) converge vers l, et si (un) est décroissante, alors pour tout n de ? , un ? l.

G. Représentation graphique d'une suite

Si la suite (un) a son terme général défini en fonction de n, on représente la suite dans un repère du plan, par un ensemble de points de coordonnées (n; un). Cette représentation graphique permet de visualiser les variations de la suite et éventuellement la convergence.

Exemple: un = n

n?1. Les sept premiers termes de la suite sont représentés ci-contre. On peut conjecturer que la suite est strictement croissante et qu'elle converge vers 1. Si la suite (un) est définie par récurrence, de la forme u n+1 = g(un), on représente la suite dans un repère du plan, en utilisant la représentation graphique de la fonction g et la droite d'équation y = x : On place u0 sur l'axe des abscisses, puis u1 comme image de u0 par la fonction g, puis on ramène u1 sur l'axe des abscisses en utilisant la droite d'équation y = x , puis u2 comme image de u1 par la fonction g, puis on ramène u2 sur l'axe des abscisses en utilisant la droite d'équation y = x , etc...

Exemple: un+1 = - 0,8un + 4 et u0 = 1.

Les sept premiers termes de la suite sont représentés ci-contre. On peut conjecturer que la suite n'est ni croissante, ni décroissante et qu'elle converge vers l, où l est solution de l'équation - 0,8x + 4 = x, soit l = 20/9.

H. Suites adjacentes

Définition: On dit que deux suites (un) et (vn) définies sur ??sont adjacentes si et seulement si les trois conditions

suivantes sont réalisées: ?(un) est croissante et (vn) est décroissante; ?Pour tout entier naturel n, un ? vn ; lim n????un?vn?= 0.

Exemple: un = 1 - 1

n?1 et vn = 1 + 1 n?1 sont des suites adjacentes.

Théorème: Si les deux suites (un) et (vn) sont adjacentes, alors elles convergent vers la même limite.

Démonstration: la suite (un) est croissante, donc pour tout entier naturel n, u0 ? un ? vn ; de même la suite (vn) est

décroissante, donc pour tout entier naturel n, un ? vn ? v0 . Donc la suite (un) est croissante et majorée par v0 ,

donc elle converge vers un réel l. La suite (vn) est décroissante et minorée par u0 , donc elle converge vers un réel

l'. La suite ( un ? vn ) converge donc vers l - l' . Or lim n????un?vn?= 0, donc l - l' = 0, et l = l'. De plus, pour tout entier naturel n, un ? l ? vn . Les deux suites de l'exemple précédent converge vers 1.quotesdbs_dbs42.pdfusesText_42
[PDF] 90 poeme classique et contemporain PDF Cours,Exercices ,Examens

[PDF] 90 poeme classique et contemporain anthologie PDF Cours,Exercices ,Examens

[PDF] 90 poeme classique et contemporain fiche de lecture PDF Cours,Exercices ,Examens

[PDF] 90 poèmes classiques et contemporains 1ère Français

[PDF] 90 poèmes classiques et contemporains analyse PDF Cours,Exercices ,Examens

[PDF] 90 poèmes classiques et contemporains anthologie PDF Cours,Exercices ,Examens

[PDF] 90 poèmes classiques et contemporains citation PDF Cours,Exercices ,Examens

[PDF] 90 poèmes classiques et contemporains lecture en ligne PDF Cours,Exercices ,Examens

[PDF] 90 poèmes classiques et contemporains lire en ligne PDF Cours,Exercices ,Examens

[PDF] 90 poèmes classiques et contemporains liste PDF Cours,Exercices ,Examens

[PDF] 90 poèmes classiques et contemporains pdf PDF Cours,Exercices ,Examens

[PDF] 90 poèmes classiques et contemporains questionnaire PDF Cours,Exercices ,Examens

[PDF] 90 poèmes classiques et contemporains resume PDF Cours,Exercices ,Examens

[PDF] 90 poèmes classiques et contemporains thèmes PDF Cours,Exercices ,Examens

[PDF] 91 tetes et 324 pattes PDF Cours,Exercices ,Examens