[PDF] Generalized Vandermonde Determinants and Characterization of





Previous PDF Next PDF



Le déterminant de Vandermonde

Le déterminant de Vandermonde. Soient n un entier supérieur ou égal `a 2 et a1 D'apr`es le principe de récurrence on en déduit que P(n) est vraie pour ...



Calcul de deux déterminants classiques: Vandermonde et Cauchy Calcul de deux déterminants classiques: Vandermonde et Cauchy

Démonstration. Montrons pour n ⩾ 2 la formule du déterminant de Vandermonde par récurrence sur n. ⋆ Initialisation: On a pour n 



Annexe Chapitre 3 : Compléments dalgèbre Calcul du déterminant

Calcul du déterminant de Vandermonde. Propriété 1 (Déterminant de Vandermonde) On procède par récurrence sur n. Initialisation : Pour n = 2 on a. V (x1



Déterminant de Vandermonde et corps cyclotomiques Déterminant de Vandermonde et corps cyclotomiques

Démonstration. Montrons pour n ⩾ 2 la formule du déterminant de Vandermonde par récurrence sur n. ⋆ Initialisation: On a pour n 



On a Recursion Formula Related to Confluent Vandermonde

determinant identity due to Schendel. 1. INTRODUCTION. Given an r-tuple. = (λ1



MATHÉMATIQUES 2

n ≥ on définit le déterminant de Vandermonde de n nombres complexes 1 2.



Deuxième épreuve CCINP 2022 – MP

déterminant de Vandermonde de n nombres complexes x1x2 ...



The determinants of matrices with recursive entries

Keywords: Determinant; LU-factorization; Recurrence relation; Vandermonde determinant. 1. Introduction. Bacher in [1] considers the determinants of matrices 



ORTHOGONAL POLYNOMIALS The link between random matrix

The monic orthogonal polynomials πn(x) satisfy a sim- ple recursive system of linear equations called the three-term recurrence. Van der Monde Determinant ...



POLYNOMIAL RECURRENCES AND CYCLIC RESULTANTS 1

cyclic resultants linear recurrence



Le déterminant de Vandermonde

Vandermonde l'élément de K défini par : 1.1 Relation de récurrence. On rappelle qu'on ne change pas la valeur d'un déterminant en ajoutant `a une ligne ...



Déterminant de Vandermonde inégalité de Hadamard et

Démonstration. Sans perte de généralité on suppose les (xi) distincts. On procède par récurrence sur n; c'est vrai pour n = 1



Calcul de deux déterminants classiques: Vandermonde et Cauchy

Montrons pour n ? 2 la formule du déterminant de Vandermonde par récurrence sur n. ? Initialisation: On a pour n = 2: V2(x1



Déterminant de Vandermonde et corps cyclotomiques

Démonstration. Montrons pour n ? 2 la formule du déterminant de Vandermonde par récurrence sur n. ? Initialisation: On a pour n = 2: V2(x1



Generalized Vandermonde Determinants and Characterization of

20 août 2016 Abstract. We present a different proof of the characterization of non–degenerate recurrence sequences which are also divisibility sequences ...



Calculs de déterminants

Exercice 7 Déterminant de Vandermonde. Montrer que Par le principe de récurrence la formule est vraie pour tout entier n ? 2.



Fiche n 2 : déterminants

Exercice 6 – un calcul de déterminant pas récurrence. Alexandre-Théophile Vandermonde né à Paris le 28 février 1735 et mort à Paris.



MATHÉMATIQUES 2

n ? on définit le déterminant de Vandermonde de n nombres complexes 1 2 L'objet de cet exercice est de démontrer par récurrence que l'on a :.



ON VANDERMONDE VARIETIES 1. Introduction The results in the

A linear recurrence relation with constant coefficients of order k is an equation of the form where W(x1...



CCP Maths 2 MP 2001 — Corrigé

2 Raisonner par récurrence sur la taille de la matrice compagnon 4.d Le déterminant de Vandermonde est le déterminant d'une base de vecteurs.

arXiv:1608.05820v1 [math.NT] 20 Aug 2016

Generalized Vandermonde Determinants and

Characterization of Divisibility Sequences

Stefano Barbero

Department of Mathematics, University of Turin

Via Carlo Alberto 10, 10122, Turin, ITALY

stefano.barbero@unito.it

Abstract

We present a different proof of the characterization of non-degenerate recurrence sequences, which are also divisibility sequences, given by Van der Poorten, Bezevin, and Peth¨o in their paper [1]. Our proof is based on an interesting determinant identity related to impulse se- quences, arising from the evaluation of a generalized Vandermonde determinant. As a consequence of this new proof we can find a more precise form for the resultant sequence presented in [1], in the general case of non-degenerate divisibility sequences having minimal polyno- mial with multiple roots.

1 Introduction

Finding properties for non-degenerate recurrence sequences and also divis- ibility sequences and determining some kind of deeper structure character- izing them is a very fascinating research field. The most important attempt to establish their behaviour in an elegant way was presentedin the paper of Van der Poorten, Bezevin, and Peth¨o [1], where they confirm what Ward conjectured in his paper [2] about the possibility that every linear divisibility sequence should be a divisor of a resultant sequence. In a fieldFof charac- teristic zero, they considered a non-degenerate recurrence sequence (an)+∞n=0, with characteristic polynomial having distinct roots. Using the Hadamard quotient theorem and the theory of exponential polynomialsthey stated that if such a sequence is a divisibility sequence, then there is a resultant sequence (¯an)+∞n=0such that ?n≥0an|¯an, MSC2010: 11B37, 11B83. Keywords: non-degenerate recurrence sequences,impulse sequences, divisibility sequences, Vandermonde determinants. 1 where ¯anhas the shape

¯an=nk?

i?

αni-βni

αi-βi?

.(1) The aim of this paper is to present a proof of this result basedon general- ized Vandermonde determinants. We start proving an interesting identity concerning non-degenerate impulse sequences and generalized Vandermonde determinants. Then we use it to restate the main result presented in [1], giving a refinement and a more precise form for then-th term of the resul- tant sequence involved. We deal with the general case of non-degenerate recurrence sequences which are also divisibility sequences and whose mini- mal polynomial has multiple roots. From now on we work over a fieldFof characteristic zero. We also remember, once and for all, that we consider a recurrence sequence as non-degenerate if the ratio of two distinct roots of its minimal polynomial is not a root of unity, and obviously all the roots are different from zero.

2 Impulse sequences and generalized Vandermonde

determinants We recall the definition of the particular recurrence sequences namedimpulse sequences. Definition 1.We define theimpulse sequencesof orderras the non- degenerate linear recurrence sequences?

X(k)n?

n=0,k= 0,...,r-1, starting with the initial conditionsX(k) j=δjk,j= 0,...,r-1,(δjkis the usual Kro- necker delta), whose minimal polynomial hassdistinct rootsαi, of respective multiplicitiesml, withl= 1,...,s,s? l=1m l=r. In the next theorem we prove a determinant identity involving these se- quences, which will allow us to give in the next section an elementary proof of the characterization of divisibility sequences presented in [1]. This iden- tity plainly connects impulse sequences to generalized Vandermonde deter- minants. During the proof of this Theorem we will use the following lemma based on the results of Flowe and Harris [3] and exposed as Theorem 21 in the wonderful compendium on determinant calculus written by Kratten- thaler [4]. Lemma 1.Letrbe a nonnnegative integer, and letBm(x)denote ther×m 2 matrix B

X X···X

X

22X2···2m-1X2

x

33X3···3m-1X3

X i.e, any next column is formed by applying the operatorX(d dX). Given a composition ofr=m1+m2+···+ms, there holds det l=1m l-1? j=1j!X(( ml 2)) l? Proof.For an exhaustive proof we refer the reader to the paper of Flowe and Harris [3]

Theorem 1.Let us consider therimpulse sequences?

X(k)n?

n=0introduced in Definition 1 and the determinant (1)nX(2)n···X(r-1)n X (1)

2nX(2)

2n···X(r-1)

2n X (1) (r-1)nX(2) (r-1)n···X(r-1) .(2)

Then we have

D=ns l=1(( ml 2)) s? l=1α(( ml 2)) (n-1) l?

αnj-αni

αj-αi?

mimj .(3) Proof.In order to explicitly evaluateDwe point out (see, e.g., the funda- mental book on recurrence sequences [5]) that fork= 1,...,r-1 X (k) hn=s? j=1m j-1? i=0c(k) i,j(nh)iαnhjh= 1,...,r-1 (4) where, from the initial conditions on

X(k)n?

n=0, the coefficientsc(k) i,jmust satisfy the relations 3 s? j=1m j-1? i=0c(k) i,jtiαtj=δk,tt= 0,...,r-1 (5) (with the convention 0

0= 1). From these relations (4) and (5) we observe

thatDis related to the product between the determinants of the following matrices

W(n) = [A1A2···As-1As]C=???????C

1 C 2... C s-1 C s??????? ,(6) where forl= 1,...,severy blockAlis anr×mlmatrix and every blockCl is anml×rmatrix, such that A l=??????1 0···0 n

lnαnl···nml-1αnlα2nl2nα2nl···(2n)ml-1α2nl··· ··· ··· ···

(r-1)n l(r-1)nα(r-1)n l···[(r-1)n]ml-1α(r-1)n l?????? C (1)

0,lc(2)0,l···c(r-1)

0,lδs,l

c (1)

1,lc(2)1,l···c(r-1)

1,l0 c (1)

2,lc(2)2,l···c(r-1)

2,l0 ··· ··· ··· ···0 c (1) ml-1,lc(2)ml-1,l···c(r-1) m

In fact we easily obtain

(-1)r+1D= det(W(n))det(C).(7)

Moreover from (5), we have

W

0 1 0···0α2s

0 0 1···0α3s

(8) where 4

W?(1) = [A?1A?2···A?s-1A?s]

and every blockA?lforl= 1,...,sis anr×mlmatrix of the form A l=??????α lαl···αl α2l2α2l···(2)ml-1α2l··· ··· ··· ··· (r-1) l(r-1)α(r-1) l···[(r-1)]ml-1α(r-1) l1 0···0??????

Clearly from (8) we get

det(W?(1))det(C) = (-1)r-1det(W(1))det(C) = 1.(9) The last step is to evaluate det(W(n)). From all the consecutiveml-1 columns ofW(n) with first entry equal to 0, we can pick up the factors n,n

2,...,nml-1withl= 1,...,s. Thanks to Lemma 1, the determinant of

the so-obtained matrix≂W(n) satisfies the equality det ≂W(n)? =s? l=1m l-1? j=1j!α(( ml 2)) n l?

αnj-αni?

mimj since we only made the substitutionsXi=αnifori= 1,...,s. Therefore, taking in account the product of the terms pickedup in order to find≂W(n), we easily obtain det(W(n)) =ns l=1(( ml 2)) s? l=1m l-1? j=1j!α(( ml 2)) n l?

αnj-αni?

mimj. Since we consider non-degenerate recurrence sequences we have ?n≥1 det(W(n))?= 0.

Now combining (9) and (7) we plainly have

D=det(W(n))

det(W(1))=ns l=1(( ml 2)) s? l=1α(( ml 2)) (n-1) l?

αnj-αniαj-αi?

mimj (10) 5

3 Characterizing property of divisibility sequencesFirst of all, we give the definition of a non-degenerate linear recurrence

sequence which is also a divisibility sequence. Definition 2.Let us consider a non-degenerate linear recurrence sequence

S= (Sn)+∞

n=0of orderrwith minimal polynomial havingsdistinct rootsαi, with respective multiplicitiesml, wherel= 1,...,sands? l=1m l=r. We defineSadivisibility sequenceif S

0= 0,S1= 1?n,m≥1, Sn|Smn.

Here we use the results on impulse sequences pointed out in previous section to retrieve the main result showed in [1] with a different approach, based on determinants, giving a more detailed expression of the resultant sequence. We recall the fundamental property which relates every recurrence sequence with suitable impulse sequences. Proposition 1.Every recurrence sequenceA= (an)+∞ n=0of orderrcan be expressed in a unique way as a linear combination ofrimpulse sequences of orderrhaving the same minimal polynomial ofA. More precisely we have ?n≥0an=r-1? k=0a r-1-kX(k)n(11) where the termsa0,a1,...,ar-1, define the initial conditions ofAand, for k= 0,...,r-1, the recurrence sequences(X(k)n)+∞n=0are the related impulse sequences. Proof.See, e.g. the fundamental book on recurrence sequences [5]. Now we are ready to prove the characterizing property of divisibility se- quences pointed out in [1], in the general case of a divisibility sequence with minimal polynomial having multiple roots, giving a complete expression of the related resultant sequence. Theorem 2.LetSbe a non-degenerate recurrence sequence of orderrwith minimal polynomial havingsdistinct rootsαiwith respective multiplicity m l,l= 1,...,sands? l=1m l=r. IfSis a divisibility sequence then for all n≥0 S n|D=ns l=1(( ml 2)) s? l=1α(( ml 2)) (n-1) l?

αnj-αni

αj-αi?

mimj .(12) 6 Proof.WhenA=Sfrom the equalities (11) we find that the following system ofr-1 equations holds for everyn≥1 ?r-1? k=2S r-1-kX(k)n+S1X(1)n+S0X(0)n=Sn r-1? k=2S r-1-kX(k)

2n+S1X(1)

2n+S0X(0)

2n=S2n

r-1? k=2S r-1-kX(k) (r-1)n+S1X(1) (r-1)n+S0X(0) (r-1)n=S(r-1)n(13) If we considerSas a divisibility sequence we haveS0= 0 andS1= 1, thus we can expressS1using the Cramer"s rule applied to the coefficient matrix X(k) hn? h=1,...r-1,k=1,...,r-1 whose determinant isD?= 0 as we proved in Theorem (1). We obtain S nX(2)n···X(r-1)n S

2nX(2)

2n···X(r-1)

2n S (r-1)nX(2) (r-1)n···X(r-1) D= 1 moreover S nX(2)n···X(r-1)n S

2nX(2)

2n···X(r-1)

2n S (r-1)nX(2) (r-1)n···X(r-1) becauseSndivides all the entriesShn,h= 1,...,r-1, of the first column. Therefore, observing that ifn= 0S0|D= 0 , we clearly have ?n≥0Sn|D. Remark 1.In particular, as a straightforward consequence of Theorem 2, if the minimal polynomial ofShas all distinct roots, i.e. we haver=sand m l=1 for alll= 1,...,r, equation (12) becomes ?n≥0Sn|?

αnj-αni

αj-αi?

since in this case obviously ?ml 2? = 0for every indexl. 7

References

[1] J. P. Bezivin, A. Peth¨o , A. J. van der PoortenA Full Characterization of Divisibility Sequences, Amer. J. Math. Vol. 112, No 6 pp. 985-1001, 1990.
[2] M. Ward,The Law of Apparition of Primes in a Lucasian Sequence,

Trans. Amer. Math. Soc., Vol 44, pp. 68-86, 1938.

[3] R. P. Flowe, A. G. HarrisA Note on Generalized Vandermonde De- terminants, SIAM J. Matrix Anal. Appl., Vol 14, No 4, pp. 1146-1151, 1993.
[4] C. KrattenthalerAdvanced Determinant CalculusThe Andrews Festschrift: Seventeen Papers on Classical Number Theory and Com- binatorics, pp. 349-426, Springer 2001. [5] G. Everest , A. J. van der Poorten, I. Shparlinski, T. WardRecurrence Sequences, Math. Surveys Monogr. , Vol 104, AMS 2003.quotesdbs_dbs50.pdfusesText_50
[PDF] déterminant matrice 2x2

[PDF] determinant matrice 3x3

[PDF] determinant matrice 4*4

[PDF] déterminant matrice 5x5

[PDF] determinant matrice exercices corrigés

[PDF] determinant matrice propriété

[PDF] déterminant sociologique définition

[PDF] déterminants taux de change

[PDF] détermination de la dureté de l'eau par complexométrie

[PDF] determination du rapport e m correction

[PDF] détermination du rapport e/m pour l'électron correction

[PDF] détermination du résultat fiscal cas pratique

[PDF] détermination dureté de l'eau

[PDF] déterminer l'acidité du lait exprimée en degré dornic

[PDF] déterminer l'age du granite de saint-sylvestre