[PDF] [PDF] COURBES PARAMETREES 1 nov 2004 · Un point





Previous PDF Next PDF



COURBES PARAMETREES

1 nov. 2004 On étudie donc la courbe sur l'intervalle [0 ?/2] et on compl`ete le tracé par deux symétries. 1. Page 2. 4 Points singuliers. Un point c(t0) d ...



Courbes paramétrées

Points singuliers – Branches infinies. 3.1. Tangente en un point singulier. Rappelons qu'un point M(t0) d'une courbe paramétrée M(t) = x(t) y(t) est dit 



Chapitre 6 Courbes paramétrées

6.2.3 Points singuliers. Propriété : Si (f (a) g (a))= (. 0. 0). alors la tangente `a la courbe au point de param`etre a est la droite qui passe par le 



Cours de Mathématiques 2

aussi les points singuliers tangentes et asymptotes. 1.2 Etude des branches infinies. Définition 2 La courbe C présente une branche infinie (ou : un arc 



Courbes planes

Montrer que la courbe paramétrée x(t) = 4t?3 t2+1 y(t) = 2t?1 t2+2 admet un unique point singulier et tracer l'allure de la courbe au ...



le Programme de licence en génie industriel-ING203

4. Etudes des points singuliers d'une courbe paramétrée. 5. Etude de courbes. 6. Définitions des séries séries convergentes et divergentes. Comparaison série- 



le Programme de licence en génie informatique-ING203

4. Etudes des points singuliers d'une courbe paramétrée. 5. Etude de courbes. 6. Définitions des séries séries convergentes et divergentes. Comparaison série- 



Les courbes paramétrées

On verra que c'est aussi le cas pour les courbes paramétrées. d'un point mobile et la courbe C est sa trajectoire. ... d'un point singulier.



F411 - Courbes Paramétrées Polaires

Courbes Paramétrées. Courbes polaires. Longueur d'un arc Courbure. Etude locale. Etude locale (hors programme). • Généralement les points singuliers jouent 



Feuille de TD n 1 : Étude locale des courbes planes

Est-ce que la courbe C admet des points singuliers ? Montrer que les courbes paramétrées suivantes admettent un unique point singulier déter-.



[PDF] Courbes paramétrées - Exo7 - Cours de mathématiques

Points singuliers – Branches infinies 3 1 Tangente en un point singulier Rappelons qu'un point M(t0) d'une courbe paramétrée M(t) = x(t) 



[PDF] Chapitre 6 Courbes paramétrées

La courbe est un moyen de résumer graphiquement toutes les étapes précédentes Il ne sert `a rien de placer énormément de points pour la tracer



[PDF] Études de courbes paramétrées - Apprendre-en-lignenet

Déterminer s'il y en a les points à tangente verticale les points à tangente horizontale et les points singuliers Calculer la limite de la pente de la 



[PDF] COURBES PARAMETREES

1 nov 2004 · Un point c(t0) d'une courbe c est dit singulier si la vitesse c (t0) = 0 On se demande quel est l'aspect de la courbe au voisinage d'un point 



[PDF] Courbes paramétrées

Etudier la courbe paramétrée définie par F signifie tracer dans le plan IR2 l'image de A par la fonction F c'est à dire l'ensemble des points M(t)=(x(t) 



[PDF] Courbes paramétrées - AlloSchool

On trace la courbe quand t décrit [0 ?] puis on complète par réflexion d'axe (Oy) puis par translations Etude des points singuliers Pour t ? [0 ?] x?(t) 



[PDF] Cours 1 : Courbes paramétrées

sont les mêmes : le cercle unité dont on a enlevé le point (?10) Page 8 Cours 1 : Courbes paramétrées V Borrelli



[PDF] Cours de Mathématiques 2

aussi les points singuliers tangentes et asymptotes 1 2 Etude des branches infinies Définition 2 La courbe C présente une branche infinie (ou : un arc 



[PDF] F411 - Courbes Paramétrées Polaires

Courbes Paramétrées Courbes polaires Longueur d'un arc Courbure Etude locale Etude locale (hors programme) • Généralement les points singuliers jouent 

  • Comment trouver le point singulier ?

    On dit que M est un point régulier si f?(t)?0. f ? ( t ) ? 0. Dans le cas contraire, on dit que M est un point singulier ou encore point stationnaire.
  • Comment trouver le paramétrage d'une courbe ?

    On appelle paramétrage une application f : I ? R2, o`u I désigne un intervalle (voire une réunion d'intervalles) de R et o`u f est continue. La courbe (paramétrée) associée `a f est son image C = f(I).
  • Comment montrer qu'une courbe est régulière ?

    Définition. – Une courbe géométrique est dite RÉGULIÈRE si l'un de ses représentants ?0 : I ?? R2 ou R3 est régulier en tous points. NORMALE. dim Vect(?(p)(t0),?(q)(t0)) = 2.
  • Pour étudier une courbe d'équation y = f(x) (ou simplement étudier une fonction f), le schéma est le suivant : – On commence par chercher l'ensemble de définition de la fonction f. Eventuellement, si la fonction est paire/impaire, périodique, on peut restreindre l'intervalle d'étude.

COURBES PARAMETREES

P. Pansu

November 1, 2004

1 Motivation

La trajectoire d"un point qui se d´eplace dans un plan, c"estdonn´e par deux fonctionsx(t) ety(t)

du temps.

2 Objectif

Lorsque les fonctionst?→x(t) ett?→y(t) sont donn´ees, on veut tracer la courbe `a la main.

On sait d´ej`a tracer des trajectoires particuli`eres, celles o`ux(t) =t. En effet, dans ce cas, la

courbe est le graphe d"une fonction d"une variable r´eelle.On va voir que le trac´e dans le cas g´en´eral

se d´eduit de ce cas particulier. Il y a deux nouveaut´es : le traitement des sym´etries, et celui des points singuliers. Notre exemple favori : la courbe d´ecrite parx(t) = sin(2t),y(t) = sin(3t) pourt?R.

3 Sym´etries

Attention, il y a deux fonctions en jeu,x(t) ety(t), et non une,y=f(x). Ca change tout. La

parit´e/imparit´e des fonctionsx(t) ety(t) se traduit par exemple par les sym´etries suivantes.

•Lorsquexetysont impaires,c(-t) =-c(t) s"obtient `a partir dec(t) par une sym´etrie centrale. •Lorsquexest impaire etypaire,c(-t) s"obtient `a partir dec(t) par une sym´etrie par rapport `a l"axeOy. •Lorsquexetysont paires,c(-t) =c(t), donc la courbe revient sur ses pas. •Lorsquexest paire etyimpaire,c(-t) s"obtient `a partir dec(t) par une sym´etrie par rapport `a l"axeOx. Pas de recette `a apprendre par coeur, mais un raisonnement d"une ligne `a savoir refaire.

Exemple.Dans l"exemplec(t) =?sin(2t)

sin(3t)? , la recherche de sym´etries conduit aux conclusions suivantes.

Commex(t+2π) =x(t) ety(t+2π) =y(t), l"intervalle [0,2π] suffit `a param´etrer toute la courbe.

Commex(t+π) =x(t) ety(t+π) =-y(t), la portion de la courbe param´etr´ee par [π,2π]

s"obtient `a partir de celle param´etr´ee par [0,π] par une sym´etrie par rapport `a l"axe 0x.

Commex(π-t) =-x(t) ety(π-t) =y(t), la portion de la courbe param´etr´ee par [π/2,π]

s"obtient `a partir de celle param´etr´ee par [0,π/2] par une sym´etrie par rapport `a l"axe 0y.

On ´etudie donc la courbe sur l"intervalle [0,π/2] et on compl`ete le trac´e par deux sym´etries.

1

4 Points singuliersUn pointc(t0) d"une courbecest ditsinguliersi la vitessec?(t0) = 0. On se demande quel est

l"aspect de la courbe au voisinage d"un point singulier. Pour cela, on utilise des d´eveloppements

limit´es. On pourra d´ecrire l"aspect de la courbe sous l"hypoth`ese que les d´eveloppements limit´es

n´ecessaires poss`edent des termes non nuls. Pour all´eger les notations, on supposera toujours quet0= 0.

4.1 Proc´ed´e pratique

On suppose quec(t) poss`ede un d´eveloppement limit´e de la forme c(t) =c(0) +tav1+tbv2+tb?(t), o`ua < betv1etv2sontlin´eairement ind´ependants.

Alors labranche sortante, i.e. pourtpositif petit, est contenue dans le quadrant d´elimit´e par

v

1etv2et tangente `av2.

Labranche entrante, i.e. pourtn´egatif petit, est aussi tangente `av1, mais contenue dans l"un des 4 quadrants d´efinis parv1etv2. Lequel ? Cela d´epend des signes detaet detbpourt <0, i.e. de la parit´e deaet deb. 2vv 12vv 12vv 12vv 1

On peut justifier le trac´e comme suit : il existe un changement de coordonn´ees tel que, dans les

nouvelles coordonn´ees, la branche sortante ait pour ´equationY=Xb/a. Dans le dernier cas, cela

ne suffit pas `a compl´eter le trac´e. Pour d´ecider si la branche entrante est plus proche ou moins

proche dev1que la branche sortante, il faut pousser le d´eveloppement limit´e plus loin, jusqu"`a ce

qu"un terme entc,cimpair, apparaisse.

4.2 Terminologie

La terminologie suivante doit ˆetre connue.

D´efinition 11. Siaest pair etbimpair, on parle depoint de rebroussement de premi`ere esp`ece. Dans ce cas, la courbe poss`ede une demi-tangente de vecteur directeurv1.

2. Siaest impair etbimpair, on parle depoint d"inflexion. Dans ce cas, la courbe poss`ede une

tangente de vecteur directeurv1.

3. Siaest impair etbpair, on parle depoint ordinaire. Dans ce cas, la courbe poss`ede une

tangente de vecteur directeurv1.

4. Siaest pair etbimpair, on parle depoint de rebroussement de deuxi`eme esp`ece. Dans ce

cas, la courbe poss`ede une demi-tangente de vecteur directeurv1. Exemple.Etude du point singulier ent= 0 de la courbe param´etr´ee parx(t) =t2,y(t) =t2+t3.

Le d´eveloppement limit´e

c(t) =t2?12? +t3?01? +t3?(t) montre qu"il s"agit d"un point de rebroussement de premi`ere esp`ece. La courbe poss`ede une demi- tangente de vecteur directeur?12? 0.04 0.02

Page 1

Rebroussement de premi`ere esp`ece

Exemple.Etude du point singulier ent= 0 de la courbe param´etr´ee parx(t) =-t3+t4, y(t) =t3.

Le d´eveloppement limit´e

c(t) =t3?-1 1? +t4?10? +t4?(t) montre qu"il s"agit d"un point ordinaire, avec tangente de vecteur directeur?-1 1?

0.20.1-0.1-0.20.2

0.1 -0.1 -0.2

Page 1

Point ordinaire

Exemple.Etude locale de la courbe param´etr´ee d´efinie parx(t) = 3(sin(t)-t),y(t) =t3+t5.

Le d´eveloppement limit´e

c(t) =t3?-1 21?
+t5?1401? +t5?(t), montre qu"il s"agit d"un point d"inflexion, de tangente de vecteur directeur?-1 21?

0.20.1-0.1-0.20.2

0.1 -0.1 -0.2

Page 1

Point d"inflexion

Exemple.Etude locale de la courbe param´etr´ee d´efinie parx(t) = 3(cos(t)-1),y(t) =t2+t4+t5.

Le d´eveloppement limit´e

c(t) =t2?3 21?
+t4?-181? +t4?(t), montre qu"il s"agit d"un point de rebroussement de deuxi`eme esp`ece, de demi-tangente de vecteur directeur? 3 21?
-0.2-0.4-0.6-0.81 0.8 0.6 0.4 0.2

Page 1

Point de rebroussement de deuxi`eme esp`ece

5 Branches infiniesOn parle debranche infinielorsquettend verst0(´eventuellementt0=±∞) si l"une des fonction

x(t) ety(t) n"est pas born´ee au voisinage det0.

Comme dans le cas des courbes repr´esentatives de fonctions, on dira qu"une courbe param´etr´ee

admet pourasymptotela droite d"´equationAx+By+C= 0 lorsquettend verst0(´eventuellement a=±∞) si l"une des fonctionx(t) ety(t) n"est pas born´ee au voisinage det0et si lim t→t0Ax(t) +By(t) +C= 0. Si|y(t)|tend vers l"infini etx(t) poss`ede une limite finieC, alors la droite affine d"´equation x-C= 0 est asymptote `a la courbe.

Sinon, pour d´eceler la pr´esence d"une ´eventuelle asymptote pourtvoisin det0, on ´etudie le

rapport y(t) x(t). Si lim t→t0y(t) x(t)= +∞, on dit que la courbe admet unebranche parabolique de direction asymptotiqueOy. S"il admet une limite finieB, on ´etudie la diff´erencey(t)-Bx(t). Si limt→t0y(t)-Bx(t) =±∞, on dit que la courbe admet unebranche parabolique de direction asymptotique la droite vectorielle d"´equationy=Bx. Si limt→t0y(t)-Bx(t) =C est finie, on conclut que la droite affine d"´equationy-Bx-C= 0 est asymptote `a la courbe. Exemple.Etude des branches infinies de la courbe param´etr´ee d´efinie parx(t) =-4t2+ 4t, y(t) = 3t3-t.

Comme lim

t→±∞y(t)/x(t) =?∞, la courbe pr´esente des branches paraboliques de directionOy.

Exemple.Etude des branches infinies de la courbe param´etr´ee d´efinie parx(t) = tan(t)+sin(t)

ety(t) = 1/cos(t).

Par p´eriodicit´e, on peut prendret?[-π,π[. Les branches infinies correspondent aux valeurs de

tpour lesquellesx(t) ouy(t) n"est pas d´efini, soitt=-π/2 ett=π/2. Pourtvoisin deπ/2, les deux coordonn´ees tendent vers l"infini. Le rapporty(t)/x(t) = sint(1 + cost) tend vers 1. La diff´erencey(t)-x(t) = sint+ (sint-1)/costtend vers 1 donc la droite d"´equationy=x+ 1 est asymptote `a la courbe. Ent=-π/2, on trouve pour asymptote la droite d"´equationy=-x-1.

6 Tableau de variation

Une fois d´etermin´ees les sym´etries, qui permettent de r´eduire l"intervalle d"´etude de la courbe, les

natures des points singuliers et des branches infinies, il nereste plus qu"`a ´etudier les variations des

fonctionsx(t) ety(t). En effet, cela permet de placer les points remarquables, `asavoir les points

singuliers et les points o`u la tangente est parall`ele `a l"un des axes de coordonn´ees. Entre deux

valeurs remarquables, le vecteur vitesse pointe dans un quadrant constant (NE, NO, SO, SE), et il suffit de respecter cette r`egle pour obtenir un trac´e satisfaisant. Exemple.Etude de la courbe param´etr´ee d´efinie parx(t) =-4t2+ 4t,y(t) = 3t3-t.

Tableau de variations :

t01/31/21 x"4+4/3+0--4 x0?8/9?1?0 y"-1-0+5/4--8 y0?-2/9?-1/8?2 On place d"abord les points et les tangentes correspondant aux valeurst= 0, 1/3, 1/2 et 1.

Puis on compl`ete le dessin.

±2±1012

y ±1

±0.8 ±0.6±0.4±0.2 0.20.40.6 0.81x

Exemple.Tracer la courbe d´ecrite parx(t) = sin(2t),y(t) = sin(3t) pourt?R.

Comme vu plus haut, on ´etudie la courbe sur l"intervalle [0,π/2] et on compl`ete le trac´e par deux

sym´etries.

Tableau de variations :

t0π/6π/4π/2 x"2+1+0--1 x0?⎷3/2?1?0 y"3+0-3⎷2/2-0 y0?1?⎷2/2?-1 On place d"abord les points et les tangentes correspondant aux valeurst= 0,π/6,π/4 etπ/2. Puis on relie ces points par des arcs ayant la bonne orientation, et on compl`ete le dessin par deux sym´etries.

±1±0.50.5

1 ±1

±0.50.51

L"´etude des variations dex(t) ety(t) r´ev`ele un point singulier ent=π. Les d´eveloppements

limit´es en fonction des=t-π x(t) =1

2s3+s3?(s), y(t) =-1-12s2+s3?(s)

montrent que le point singulier est un rebroussement de premi`ere esp`ece, avec demi-tangente verticale. x21-1-2y2 1 -1 -2

Page 1

-0.92 -0.94 -0.96 -0.98 -1 -1.02 -1.04 -1.06 -1.08 Page 1Vue d"ensemble avec les asymptotes Zoom au point singulierquotesdbs_dbs19.pdfusesText_25
[PDF] courbe paramétrée cours

[PDF] courbe paramétrée tracer

[PDF] courbe paramétrée symétrie

[PDF] courbes paramétrées exercices corrigés prépa

[PDF] courbe paramétrée exo7

[PDF] comment dessiner une branche parabolique

[PDF] résumé branches infinies

[PDF] branches infinies developpement limité

[PDF] branche parabolique de direction asymptotique

[PDF] methode branches infinies

[PDF] etudes des fonctions branches infinies

[PDF] mode d'emploi lave linge brandt

[PDF] comment utiliser machine a laver brandt

[PDF] bras de levier définition

[PDF] levier inter appui