[PDF] Décomposition en série de Fourier Signaux périodiques





Previous PDF Next PDF



Développement en Série de Fourier

a). Développer f en une série de cosinus en la prolongeant comme une fonction paire. b). Développer f en une série de sinus en la prolongeant comme une fonction 



Séries de Fourier

Donner le développement en série de Fourier de f1 = cos3(x) et montrer qu'il les plus élémentaires possibles (à savoir les sinus et les cosinus i.e.



Séries de Fourier

Donner le développement en série de Fourier de f1 = cos3(x) et montrer qu'il les plus élémentaires possibles (à savoir les sinus et les cosinus i.e.



1. Séries de Fourier

Le développement en série de Fourier d'une fonction paire ne contient que des cosinus (c'est le cas de la fonction de l'exemple 2).



Les séries de Fourier

La formule de Parseval (admise). Il est aussi fait allusion `a l'utilisation du développement en série de Fourier d'une fonction périodique pour calculer la 



Décomposition en séries de Fourier dun signal périodique

Le développement en séries de Fourier ne contient alors que des termes en cosinus ((les coefficients bn sont nuls). 1-2) Spectre en fréquences :.



Chapitre 1.X1 –Les séries de Fourier

La série de Fourier correspond à un développement d'une fonction ( ). f x sur une période de 2? à l'aide de fonctions sinus et cosinus de période 



Séries de Fourier

Soit f la fonction 2?-périodique telle que : ? x ? [?? ?[



Décomposition en série de Fourier Signaux périodiques

Analyse de Fourier de signaux analogiques Série & transformée de Fourier ... Montrer que le développement en série de Fourier d'un signal.



Première semaine de travail : Série de Fourier

Analyse de Fourier - Série de Fourier. 2. Correction. 1) Nous savons par l'énoncé que la fonction f est paire donc son développement en cosinus-sinus.



[PDF] Développement en Série de Fourier

Développer en série de Fourier la fonction f de période T = 2? IMPAIRE définie par : f(t) = t(? ? t) si t ? [0 ; ?] apr`es l'avoir représentée graphiquement 



[PDF] Chapitre 7 Séries de Fourier

Dans ce chapitre nous allons étudier une représentation des fonctions périodiques en séries connues sous le nom de Fourier représentation qui joue un rôle 



[PDF] Séries de Fourier

a0 = 1 T ?? f(x) dx an = 2 T ?? f(x) cos(nwx) dx bn = 2 T ?? f(x) sin(nwx) dx Page 2 I Donner le développement en série de Fourier de f1 = cos3(x) 



[PDF] Les séries de Fourier - Institut de Mathématiques de Bordeaux

Il est aussi fait allusion `a l'utilisation du développement en série de Fourier d'une fonction périodique pour calculer la somme d'une série numérique



[PDF] 1 Séries de Fourier - lEAMAC

Le développement en série de Fourier d'une fonction paire ne contient que des cosinus (c'est le cas de la fonction de l'exemple 2) On dit alors que l'on a une 



[PDF] SERIES DE FOURIER - Toutes les Maths

On dit que (16) est le développement de f en série de Fourier On dit aussi que la série de Fourier de f définie par Sf(t) = a0 + +? ? n=1 an cos(n?t) 



[PDF] Séries de Fourier - Faculté des Sciences de Rabat

Le développement en série de Fourier est : f(x) = ? 2 ? 4 ? ? ? p=0 cos((2p + 1)x) (2p + 1)2 (2 3) L'égalité (2 3) est exacte partout Remarque



[PDF] S´eries de Fourier

On appelle développement en série de Fourier d'une fonction 2 ?-périodique f la série trigonométrique ˜f(x) = a0 2 + ? ? n=1 (an cos(n x) + bn 



[PDF] Séries de Fourier : synth`ese de cours

(an cos(nx) + bn sin(nx)) ou sous la forme : f(x) = +? ? n=?? cneinx = lim N?+? N ? n=?N cneinx 1 Coefficients de Fourier et Séries de Fourier



[PDF] Exercices corrigés sur les séries de Fourier

Exercice 1 Calculer la série de Fourier trigonométrique de la fonction 2?-périodique f cos ( (2k + 1)t ) Puisque la fonction f est continue sur R 

:
Décomposition en série de Fourier Signaux périodiques

TdS H. Garnier 1

Hugues GARNIER

hugues.garnier@univ-lorraine.fr Décomposition en série de Fourier Signaux périodiques

TdS H. Garnier 2

Organisation de l'UE de TdS

I. Introduction

II. Analyse et traitement de signaux déterministes - Analyse de Fourier de signaux analogiques

• Signaux à temps continu • Décomposition en série de Fourier • Transformée de Fourier à temps continu

- De l'analogique au numérique - Analyse de Fourier de signaux numériques III. Filtrage des signaux IV. Analyse et traitement de signaux aléatoires

TdS H. Garnier 3

Introduction

• Domaine, jusqu'à présent, habituel pour analyser un signal : - Domaine temporel : analyse de l'évolution du signal dans le temps

• Permet de mettre en évidence certaines caractéristiques :

• signal périodique ou non (détermination de la période), • amplitude (valeur moyenne, maximale...), • signal analogique/numérique, énergie finie/infinie, ...

• Déterminer l'expression analytique du signal ci-dessous ?

5 s(t) t (ms) 5 0

s(t)=?

TdS H. Garnier 4

Introduction

• L'expression mathématique du signal est : - L'observation dans le domaine temporel est s ouvent insuffisante pour déduire l'expression mathématique du signal - Il serait int éressant de tro uver une autre représentation qui app orterait plus d'informations sur le signal que la représentation usuelle temporelle - Cette nouvelle représentation devra faire directement apparaître certaines caractéristiques du signal (par exemple A o , A 1 , A 2 o 1 2

) non plus dans le do maine temporel (en fonct ion du temps) mais dans le do maine fréquentiel, c'est à dire en fonction de la fréquence.

5 s(t) t (ms) 5 0

TdS H. Garnier 5

• Représentation habituelle : amplitude du signal en fonction du temps • Nouvelle représentation : amplitude et phase initiale en fonction de la fréquence

5 s(t) t (ms) 5 0f (Hz) 0

A o =2 A 1 =5 A 2 =10 A n

1000 2500 f (Hz) 0

o =0 ϕ n

1000 2500

3 1 2 2

TdS H. Garnier 6

Série & transformée de Fourier

Joseph FOURIER

• Auxerre 1768 - Paris 1830 • Grand savant français • A pr ofondément influencé les mathématiques et la physique des sciences de son siècle • L'étude de la propagation de la chaleur l'a amené à la découverte des séries trigonométriques portant son nom

TdS H. Garnier 7

Théorème de Fourier Sous certaines conditions de dérivation et de continuité, tout signal à temps continu s(t) périodique de période T

o peut s'écrire sous la forme d'une somme de signaux sinusoïdaux Cette somme peut s'écrire de deux manières : - forme trigonométrique réelle - forme exponentielle complexe

TdS H. Garnier 8

Forme trigonométrique réelle

avec : Tout signal à temps continu s(t) périodique de période T o peut s'écrire :

Le terme g énéral u

n (t)=a n cos(nω o t)+b n sin(nω o t)=A n cos(nω o t-ϕ n ) est appelé harmonique de rang n C'est un signal cosinusoïdal d'amplitude A n de période T o /n (fréquence nf o ) et de phase à l 'origine -ϕ n

TdS H. Garnier 9

Remarques et propriétés

- a 0 : valeur moyenne du signal (composante continue) - Harmonique d'ordre 1 : fondamental - Amplitudes A n tendent vers 0 lorsque n tend vers l'infini - Décomposition indépendante de l'intervalle [t 0 , t 0 +T o - Si s(t) pair - Si s(t) impair

TdS H. Garnier 10

Spectres unilatéraux d'amplitude et de phase

• Spectre d'amplitude de s(t) : tracé de A n en fonction des pulsations (fréquences) • Spectre de phase de s(t) : tracé de ϕ n

en fonction des pulsations (fréquences) • On parle de représentation fréquentielle ou spectrale • A

n et ϕ n n'existant que pour des multiples entiers de ω o on parle de spectres de raies. composante continue 0 ω o

2 ω

o

3 ω

o

4 ω

o A 1 A 0 A 2 A 3 A 4 A 5

5 ω

o A n fondamental ω (rd/s)

Spectre unilatéral de phase

0 n o

2 ω

o

3 ω

o

4 ω

o 1 0 2 3 4 5

5 ω

o

ω (rd/s)

Spectre unilatéral d

'amplitude 0 T o s(t) t

Evolution temporelle du signal

TdS H. Garnier 11

Exemple 1 : cas d'un signal sinusoïdal

• Soit un signal sinusoïdal décrit par : C 'est un signal ne contenant qu'un seul harmonique ! s(t)=2cos(2π10t-π4)

Domaine temporel

s(t) t 2

0.1125 0 0.0125 T

o =0.1s A 1 A 2 A 3 A 4 A 5 0 10 20

304050

A n fondamental f (Hz) 2

Domaine fréquentiel

Spectre unilatéral de phase Spectre unilatéral d 'amplitude 1 2 3 4 5

0 10 20 30 40 50 ϕ

n f ( Hz )

4 π

TdS H. Garnier 12

Exemple 2 : cas d'un créneau

• Montrer que le dévelop pement en s érie de Fourier d'un signal créneau s'écrit : s(t) t A T o 0

Domaine temporel

A n 4A 3 4A 3ω 5ω 3ω 5ω n 2

Domaine fréquentiel

Spectre unilatéral de phase Spectre unilatéral d 'amplitude

TdS H. Garnier 13

Evolution temporelle des harmoniques Reconstruction du signal à partir des harmoniques

0 -2 0 2 0 0 0 0 0 1 -5 0 5 0 1 -5 0 5 0 1 -5 0 5 0 1 -5 0 5 0 1 -5 0 5 -2 0 2 -2 0 2 -2 0 2 -2 0 2 1 1 1 1 1

Harmonique 1 Harmoniques 1 et 3 Harmoniques 1, 3 et 5 Harmoniques 1, 3, 5 et 7 Harmoniques 1, 3, 5 7 et 9 Harmonique 1 Harmonique 5 Harmonique 3 Harmonique 7 Harmonique 9

Ondulations = phénomène de Gibbs

A=2 T o =1

TdS H. Garnier 14

Théorème de Fourier

Sous certaines conditions de dérivation et de continuité, tout signal à temps continu s(t) périodique de période T o peut s'écrire sous la forme d'une somme de signaux sinusoïdaux. Cette somme peut s'écrire de deux manières : - forme trigonométrique réelle - forme exponentielle complexe

TdS H. Garnier 15

De la forme trigonométrique à la forme exponentielle complexe • Tout signal à temps continu s(t) périodique de période T o peut s'écrire :

En utilisant les formules d'Euler :

• On montre que tout signal à temps continu s(t) périodique de période T o peut également s'écrire :

Forme trigonométrique

réelle

Forme exponentielle

complexe

TdS H. Garnier 16

Forme exponentielle complexe

• Tout signal à temps continu s(t) périodique de période T o peut s'écrire : • Remarques - Les coefficients c n

sont appelés coefficients de Fourier - Ces coefficients sont généralement complexes et peuvent

s 'écrire sous forme exponentielle complexe : - L 'harmonique de rang n s'écrit également : L'harmonique de rang n est donc une cosinusoïde de pulsation nω o d'amplitude 2 |c n et de déphasage Arg(c n

TdS H. Garnier 17

Spectres bilatéraux d'amplitude et de phase

• Les coefficients de Fourier sont généralement complexes et peuvent s 'écrire : • Spectre d 'amplitude de s(t) : tracé de |c n | en fonction des pulsations • Spectre de phase de s(t) : tracé de Arg(c n ) en fonction des pulsations

Spectre bilatéral de phase

0

Spectre bilatéral d

'amplitude 0 T o s(t) t

Evolution temporelle du signal

cn=cnejArg(cn)Ic n I 0 o 2ω o 3ω o Ic 1 I c 0 Ic 2 I Ic 3 I fondamental

ω (rd/s)

Ic -1 I Ic -2 I Ic -3 I o -2ω o -3ω o Arg(c n 0 o 2ω o 3ω o

ω (rd/s)

o -2ω o -3ω o

TdS H. Garnier 18

Propriétés des spectres bilatéraux

• Il apparaît dans l'expression de s(t) des termes pour les fréquences s'étendant de - ∞ à +∞, d'où le nom de spectres bilatéraux

• Le spectre d'amplitude bilatéral est toujours pair • Le spectre de phase bilatéral est toujours impair • Les 2 spectres ne comportent des composantes qu'aux multiples

entiers de la fréquence du signal, on parle de spectres de raies Spectre bilatéral de phase Spectre bilatéral d'amplitude Ic n I 0 o 2ω o 3ω o Ic 1 I c 0 Ic 2 I Ic 3 I fondamental

ω (rd/s)

Ic -1 I Ic -2 I Ic -3 I o -2ω o -3ω o Arg(c n 0 o 2ω o 3ω o

ω (rd/s)

o -2ω o -3ω o

TdS H. Garnier 19

Exemple 1 : cas d'un signal sinusoïdal

• Soit un signal sinusoïdal décrit par : s(t)=2cos(2π10t-π4)

Domaine temporel

Domaine fréquentiel

Spectre bilatéral de phase Spectre bilatéral d 'amplitude

0 10 20 30 f ( Hz) 1 -20 -10

n c 1 c 1 c c c 3 c 010 20 30
f (Hz) -20-10 )c(Arg n 4 4 s(t) t 2

0.1125 0 0.0125 T

o =0.1s

TdS H. Garnier 20

Exemple 2 : cas d'un créneau

• Montrer que les coefficients de Fourier sont donnés par : s(t) t A T o 0

Domaine temporel Domaine fréquentiel

Spectre bilatéral de phase Spectre bilatéral d 'amplitude 2A 3 2A n c 2A 3 2A -3ω 3ω 5ω 3 5 0 n c Arg

2 π 2 π

π 2

quotesdbs_dbs33.pdfusesText_39
[PDF] séries de fourier résumé

[PDF] développement en série de fourier signal triangulaire

[PDF] factorisation 4ème exercices

[PDF] factorisation 5eme pdf

[PDF] développement limité en 1

[PDF] développement taylor

[PDF] développement limité cours mpsi

[PDF] formule de taylor exercice corrigé

[PDF] cours développement limité

[PDF] développement limité exercices corrigés s1 economie

[PDF] développement limité arctan

[PDF] développement limité exercices corrigés exo7

[PDF] calcul développement limité

[PDF] développement limité exponentielle infini

[PDF] développement limité en a