[PDF] [PDF] Fonctions de plusieurs variables et applications pour lingénieur

Remarque : une fonction f peut ne pas être dérivable ou plusieurs fois dérivable et admettre cependant un développement limité 2 1 3 4 Formule de Taylor- 



Previous PDF Next PDF





[PDF] Fonctions de plusieurs variables

1 nov 2004 · Pour une fonction d'une variable f, définie au voisinage de 0, être dérivable en 0, c'est admettre un développement limité `a l'ordre 1, f(x) = b + 



[PDF] Fonctions de plusieurs variables et applications pour lingénieur

Remarque : une fonction f peut ne pas être dérivable ou plusieurs fois dérivable et admettre cependant un développement limité 2 1 3 4 Formule de Taylor- 



[PDF] 1 Fonctions de plusieurs variables

f en x0, et un développement `a l'ordre 2 donne le cercle osculateur Le graphe d' une fonction de deux variables est une surface Un développement limité



[PDF] Fonctions de plusieurs variables

Cette fonction affine n'est autre que la partie principale du développement limité ` a l'ordre 1 de f Graphiquement, cela revient `a approcher le graphe de f par sa 



[PDF] Fonctions de plusieurs variables - Université de Poitiers

10 avr 2009 · Gradient et courbes de niveau 5 Extrema 5 1 Signe d'une forme quadratique en deux variables 5 2 Développement limité à l'ordre 



[PDF] Développements limités dune fonction `a deux variables

variables Ici, on va traiter seulement le cas de l'ordre 1 et le cas de l'ordre 2 au voisinage du point (a, b) 1 Développement limité d'ordre 1 d'une fonction `a 



[PDF] 13 Quelques techniques de calcul des DL

voisinage de x0 ∈ R Si f admet un développement limité d'ordre m en x0 donné par f(x) Les formules ci-dessous concernent des développements limités de fonction usuelles en 0 1 5 DL d'ordre 2 pour une fonction de deux variables



[PDF] Fonctions de plusieurs variables Limites dans R - Institut de

Maintenant qu'on a défini la notion de limite pour des suites dans Rn, la notion de continuité s'étend sans problème à des fonctions de plusieurs variables En 



[PDF] développements limités

2 Fonctions de la variable réelle 9 2 1 Limites; branches infinies 2 5 Formules de Taylor; développements limités 4 1 Fonctions de plusieurs variables



[PDF] Cours dAnalyse 3 Fonctions de plusieurs variables

plusieurs variables réelles ici) par une application linéaire au voisinage d'un point Le cadre général 27 2 Fonctions de plusieurs variables Limite Continuité 29 2 1 Fonctions réelles de variable réelle développement en sé- ries que 

[PDF] telecharger exercices de recherche operationnelle

[PDF] recherche opérationnelle exercices corrigés gratuit

[PDF] cours de recherche operationnelle gratuit pdf

[PDF] programmation linéaire exercices corrigés simplex

[PDF] examen recherche opérationnelle corrigé

[PDF] exercice corrigé methode simplexe pdf

[PDF] multiples et sous multiples physique

[PDF] multiples et sous multiples physique exercices

[PDF] multiples et sous multiples du gramme

[PDF] multiple et sous multiple exercice

[PDF] multiples et sous multiples du litre

[PDF] multiplicateur fiscal formule

[PDF] multiplicateur fiscal macroéconomie

[PDF] cobb douglas explication

[PDF] revenu d'équilibre formule

[PDF] Fonctions de plusieurs variables et applications pour lingénieur Service Commun de Formation ContinueAnnée Universitaire 2006-2007 Fonctions de plusieurs variableset applications pour l"ingénieur

Polycopié de cours

Rédigé par YannickPrivat

Bureau 321 - Institut Élie Cartan Nancy (Mathématiques) - Université Henri Poincaré Nancy 1

B.P. 239, F-54506 Vandoeuvre-lès-Nancy Cedex.

e-mail : Yannick.Privat@iecn.u-nancy.fr ii

Avant-ProposCe cours présente les concepts fondamentaux de l"Analyse des fonctions de plusieurs variables.

Les premiers chapitres généralisent les notions de limite,dérivabilité et dévelopement limité, bien

connus dans le cas des fonctions d"une variable. Nous ne rechercherons pas dans ce cours une for-

malisation mathématique théorique de ces concepts, mais nous intéresserons au contraire à leurs

nombreuses applications dans le domaine de la Physique. Nous ciblerons trois axes principaux de développement : •l"optimisation (recherche d"extremums, minimisaton d"une énergie, etc.);

•les équations aux dérivées partielles (équation de la chaleur, équation des cordes vibrantes, des

ondes, etc.); •l"intégration (calculs de moments d"inertie, de flux, etc.). Travail personnel de préparation :le premier chapitre présente des pré-requis utiles pour bien aborder ce cours. Je vous demande donc de l"étudiersérieusement pour la première séance et de noter toutes les questions que vous vous posez afin que nous en discutions en cours.

YannickPrivat

iii iv Table des matières1 Introduction à l"étude des fonctions de plusieurs variables 1

1.1 Fonctions de deux variables à valeurs réelles . . . . . . . . .. . . . . . . . 1

1.1.1 Exemple mathématique et définition . . . . . . . . . . . . . . . .. 1

1.1.2 Exemple en Physique . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.3 Représentation graphique d"une fonction à deux variables . . . . . . 3

1.2 Dérivées partielles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 4

1.2.1 Rappel : dérivation d"une fonction deRdansR. . . . . . . . . . . 4

1.2.2 Calcul de dérivées partielles . . . . . . . . . . . . . . . . . . . .. . 4

1.2.3 Dérivées partielles d"ordre supérieur . . . . . . . . . . . .. . . . . . 6

1.3 Fonction denvariables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Fonction de trois variables à valeurs réelles . . . . . . .. . . . . . . 6

1.3.2 Fonctions à valeurs vectorielles . . . . . . . . . . . . . . . . .. . . 7

1.3.3 Généralisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Exercices du chapitre . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 9

2 Calculs de limites et continuité11

2.1 Technique de recherche de limites . . . . . . . . . . . . . . . . . . .. . . . 11

2.1.1 Cas réel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.2 Formes indéterminées . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.3 Techniques pour lever les indéterminations . . . . . . . .. . . . . . 12

2.1.3.1 Fonctions polynôme ou rationnelle . . . . . . . . . . . . . 12

2.1.3.2 Technique du nombre dérivé . . . . . . . . . . . . . . . . . 13

2.1.3.3 Développements limités . . . . . . . . . . . . . . . . . . . 13

2.1.3.4 Formule de Taylor-Lagrange . . . . . . . . . . . . . . . . . 15

2.2 Contiuité des fonctions . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 16

2.2.1 Cas réel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 Cas des fonctions deR2dansR. . . . . . . . . . . . . . . . . . . . 16

v viTABLE DES MATIÈRES

2.2.3 Techniques générales . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Exercices du chapitre . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 20

3 Notion de différentiabilité23

3.1 Applications linéaires . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 23

3.2 Calcul différentiel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 23

3.2.1 Dérivée selon un vecteur . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.2 Fonctionsf:Rn-→Rp. . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.3 Application différentielle . . . . . . . . . . . . . . . . . . . . . .. . 25

3.2.4 Développement limité . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.5 Expression explicite de la différentielle . . . . . . . . . .. . . . . . 27

3.2.6 Méthode générale de calcul . . . . . . . . . . . . . . . . . . . . . . .28

3.3 Conséquences de la différentiabilité . . . . . . . . . . . . . . . .. . . . . . 29

3.3.1 Notion de gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.2 Schéma récapitulatif . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Exercices du chapitre . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 30

4 Déterminant, Matrice jacobienne, Jacobien 35

4.1 Matrice jacobienne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35

4.1.1 Différentiabilité des fonctions deRndansRp. . . . . . . . . . . . . 35

4.1.2 Généralisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1.3 Le Jacobien . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Notion deC1-difféomorphisme . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.1 Généralités . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.2 Caractérisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Exercices du chapitre . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 39

5 Recherche d"extrema43

5.1 Problèmes liés à la recherche d"extrema . . . . . . . . . . . . . .. . . . . . 43

5.1.1 Développement limité à l"ordre 2 . . . . . . . . . . . . . . . . . .. 43

5.1.2 Points critiques et extrema . . . . . . . . . . . . . . . . . . . . . .. 43

5.2 Caractérisation des points critiques . . . . . . . . . . . . . . .. . . . . . . 44

5.2.1 Hessienne d"une fonction . . . . . . . . . . . . . . . . . . . . . . . .44

5.2.2 Quelques notions d"Analyse spectrale . . . . . . . . . . . . .. . . . 45

5.3 Cas de la dimension 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

TABLE DES MATIÈRESvii

5.4 Exercices du chapitre . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 48

6 Introduction aux EDP51

6.1 Équations différentielles . . . . . . . . . . . . . . . . . . . . . . . . .. . . 51

6.1.1 Quelques rappels sur les équations différentielles linéaires . . . . . . 51

quotesdbs_dbs2.pdfusesText_2