[PDF] Chapitre 6 Courbes paramétrées





Previous PDF Next PDF



Courbes paramétrées

La tangente en un point régulier est dirigée par le vecteur dérivé en ce point. Page 10. COURBES PARAMÉTRÉES. 2. TANGENTE À UNE COURBE PARAMÉTRÉE. 10.



Cours 1 : Courbes paramétrées

Une courbe paramétrée peut ne pas avoir de tangente au sens de cette définition alors que son support vu comme un graphe



Chapitre 6 Courbes paramétrées

téristiques déterminés au cours de l'étude : on trace les asymptotes on Une courbe paramétrée est une courbe dont l'abscisse et l'or-.



F411 - Courbes Paramétrées Polaires

Définition d'une courbe paramétrée. Domaine de définition. Courbes à paramétrage périodique. Réduction du domaine d'étude. Exemple. Variation de x et y.



COURBES PARAMÉTRÉES

x = x(t) y = y(t) t ? I. COURS DE MATHÉMATIQUES. EN TERMINALE C ET D. Page 3. Étude d'une courbe paramétrée. 3. NB : si l'on veut que cette définition ait un 



Chapitre10 : Courbes paramétrées (planes)

4.0 International ». https://www.immae.eu/cours/. Chapitre10 : Courbes paramétrées. (planes) tM(t)t P Iu s'appelle le support de l'arc paramétré ?



Chapitre 2 — Courbes paramétrées 1 Introduction

MVA006 Applications de l'Analyse `a la Géométrie– Cours n?3. Jacques Vélu (CNAM) se donner une courbe paramétrée plane revient `a se donner 2 fonctions.



Cours 1.´Etude des Courbes Planes Paramétrées

Cours 1: Courbes Planes Paramétrées. 2. Idée intuitive d'une courbe paramétrée. Considérons une particule que se déplace dans le plan euclidien.



Programme du cours

trouver une paramétrisation locale pour toute courbe réguli`ere. 1.1 Courbes paramétrées. Définition. Une courbe paramétrée (ou chemin) de classe Ck (avec k 



Chapitre 6 - Fonctions vectorielles et courbes paramétrées - Cours

Chapitre 6 - Fonctions vectorielles et courbes paramétrées - Cours A - Restreindre l'intervalle d'étude d'une courbe paramétrée . . . . . . . . . 7.



[PDF] Courbes paramétrées - Exo7 - Cours de mathématiques

Dans ce chapitre nous allons voir les propriétés fondamentales des courbes paramétrées Commençons par présenter une courbe particulièrement intéressante



[PDF] Cours 1 : Courbes paramétrées

Cours 1 : Courbes paramétrées V Borrelli Régularité Giuseppe Peano Longueur et courbure Spirales dans la Nature Courbes du plan Toujours des



[PDF] Chapitre 6 Courbes paramétrées

Une courbe paramétrée est une courbe dont l'abscisse et l'or- donnée sont toutes les deux des fonctions d'un param`etre t i e il s'agit d'une



[PDF] COURBES PARAMÉTRÉES - CACSUP

COURS DE MATHÉMATIQUES 1 3 1 Définition d'une courbe paramétrée On appelle courbe paramétrée (C ) l'ensemble des points M(t) de représentation



[PDF] Études de courbes paramétrées - Apprendre-en-lignenet

Si x(t) – a est positif la courbe est à droite de l'asymptote sinon elle est à gauche La courbe coupe l'asymptote lorsque x(t) = a Asymptote horizontale



[PDF] Chapitre10 : Courbes paramétrées (planes) - Melusine

4 0 International » https://www immae eu/cours/ Chapitre10 : Courbes paramétrées (planes) tM(t)t P Iu s'appelle le support de l'arc paramétré ? 



[PDF] Courbes paramétrées - AlloSchool

On trace la courbe quand t décrit [0 ?] puis on complète par réflexion d'axe (Oy) puis par translations Etude des points singuliers Pour t ? [0 ?] x?(t) 



[PDF] Chapitre 2 — Courbes paramétrées 1 Introduction

Une courbe paramétrée décrit une courbe géométrique unique alors qu'une courbe géométrique peut être paramétrée de plusieurs façons : 2 Page 3 MVA006 



[PDF] Courbes paramétrées

Courbes paramétrées Jusqu'à présent les courbes qui ont été étudiées correspondaient à des fonctions définies sur IR ou une partie de IR et à valeurs dans 



[PDF] Chapitre 3 COURBES PARAMETREES PLANES ET APPLICATIONS

Ainsi une courbe paramétrée est une application qui à un réel t appelé le paramètre associe un point du plan M"t# C`est aussi l`ensemble des positions 

:

Chapitre6

Courbesparam´et r´ees

41

42CHAPITRE6.COURBES PARAM

ETR EES

6.1Courbesd'´ equationy=f(x)

Pour´etudierunecourb ed'´equationy=f(x)(ousimplemen t´ etudierune fonctionf),lesc h´ema estlesuivant: -Oncommence parcherc her l'ensemblede d´efinitiondelafonctionf. Eventuellement,silafonctionestpaire/impaire,p´erio dique,onp eut restreindrel'interv alled'´etude. -Onc herchesi onpeutprolongerfparcontin uit´e. -On´ etudielad ´erivabilit´ede f.Laplupart desfonctions"enpratique» sontd´erivables (etmˆemeC )surleur ensemble ded´ efinition,mais attention,¸can'estpas toujourslecas(racinecarr´ ee,arcsin...).Si ona prolong´elafonctionf,on´ etudie´egalementlad´erivabilit´eau(x)point(s) deprolongement. -On´ etudielesv ariationsdelafonctionf(laplupartdu tempsen´ etu- diantlesignedela d´eriv ´ee). -Onc hercheles limitesdefauxbornes desonensemblede d´efinition. -Onr ´esumeles deux´etapespr´ec´ edentesdans letableaude variationsde f. -Even tuellement,on´etudielesasymptotesobliques(s'ilyena). -Ontrace lacourbe. Lacourbe estunmo yender´ esumergraphiquement toutesles´ etapespr ´ec´edentes.Ilnesert` ariendeplacer´enorm´ementde pointspourlatracer.Il faut(etilsu ffi tde)placer les´ el´emen tscarac- t´eristiquesd´etermin´esau coursdel'´etude:ontracelesasymptotes,on placelesp ointso `uilyadestangenteshorizon tales,destangentesver- ticales,´ev entuellementquelquespointsparticuliers(intersectionavec lesaxes,ou lesasymptotes), etonrelie lespoin tsentenan tcomptedu tableaudev ariations.Even tuellement,sionacalcul ´el'´equationd'une tangente,onlatrace.

Remarques:

-Lacourb edoitˆ etrelacourberepr´ esentative d'unefonction,i.eilne doitpasy avoir plusieurspoin tsaveclamˆemeabscisse. -Unecourb edoit ˆetretrac´eede mani`ere pr´eciseetsoign´ ee. Exemple:On´etudie lacourbed'´equation y=(x+5) x+1 x-1

6.2.COURBESP ARAM

ETR

EESENCOORDONN

EESCART

ESIENNES43

6.2Courbesparam´ etr´eesencoordonn ´eescar-

t´esiennes Danslapartie pr´ ec´eden te,l'ordonn´ee´etaitunefonctiondesabscisses:on avaity=f(x).Unecourb eparam´ etr´eeestunecourb edontl'abscisseetl'or- donn´eesonttouteslesdeux desfonctionsd'unparam`etre t,i.eil s'agitd'une courbedontl' ´equationestdelaforme x=f(t) y=g(t) o`utestlav ariable. Physiquement,celas'interpr`ete commelatra jectoired'unpointenfonc- tiondutemps :`a touttempstcorresponduneposition (f(t),g(t)). 6.2.1

Etudedesbranchesinfini es

SoitM:I→R

2 unecourbe param´etr´eeet a?I.Onnote M=(x,y). D´efinition.Onditque Mposs`edeunebrancheinfinieauvoi sinage de asilim t→a ?M(t)?=+∞.

Plusieurscasson tp ossibles:

-Premiercas:seulel'unedes deuxlimiteslim t→a x(t)oulim t→a y(t)est infinie(l'autreest finie).

1.Silim

t→a x(t)=m?Retlim t→a y(t)=±∞,ladroite d'´equation x=m estappel ´eeasymptotedeMena.

2.Silim

t→a x(t)=±∞etlim t→a y(t)=m?R,ladroite d'´equation y=m estappel ´eeasymptotedeMena. -Secondcas: lesdeuxlimites lim t→a x(t)etlim t→a y(t)sont infinies.

1.Silim

t→a y(t) x(t) =0,on ditqueMposs`edeunebrancheparabolique dansladirection (Ox).

2.Silim

t→a y(t) x(t) =±∞,ondit queMposs`edeunebrancheparabo- liquedansladirection (Oy).

3.Silim

t→a y(t) x(t) =m?R: (a)silim t→a y(t)-mx(t) =±∞,ondit queMposs`edeune brancheparaboliquedansladirection y=mx; (b)silim t→a y(t)-mx(t) =p?R,ladroite d'´equation y=mx+p estappel ´eeasymptotedeMena.

44CHAPITRE6.COURBES PARAM

ETR EES

6.2.2R´eductiondudomaine d'´etude

Onconsid` eretoujoursunecourbeparam´etr ´eedonn ´eeen coordonn´eescar- t´esiennessurunintervalle r´eel I:M=(x,y):I→R 2 .Lapremi `ere´ etape deson´ etudeconsiste` areduirel'intervalled' ´etudeen s'appuyantsur unep´ e- riodicit´eou/etdessym´etries.Plusieurscas sontp ossibles.Laliste suivante n'estpasexhaustiv e.

1.Caso` uI=Reto` uxetysontp´erio diquesdep´eriodeT:alors

pourtoutt?R,lep ointM(t+T)co¨ıncideav eclepointM(t).D'o` u

Etudesurun interv alledelongueur T

2.Caso` uIestsym´ etriqueparrapport`a 0eto` uxetysont

paires:alorspour toutt?I,lep ointM(-t)co¨ıncideav eclepoint

M(t).D'o` u

EtudesurI∩R

3.Caso` uIestsym´ etriqueparrapport`a 0eto` uxetysont

impaires:alorspour toutt?I,lep ointM(-t)estle sym´etrique du pointM(t)parrapp ort`a O.D'o`u

EtudesurI∩R

puissym´ etrieparrapport`aO

4.Caso` uIestsym´ etriqueparrapport`a 0eto` uxestpaireet y

estimpaire: alorspour toutt?I,lep ointM(-t)estle sym´ etrique dupoin tM(t)parrapp ort`a (Ox).D'o`u

EtudesurI∩R

puissym´ etrieparrapport`a(Ox)

5.Caso` uIestsym´ etriqueparrapport`a0eto` uxestimpaireet

yestpaire :alorspour toutt?I,lep ointM(-t)estle sym´ etrique dupoin tM(t)parrapp ort`a (Oy).D'o`u

EtudesurI∩R

puissym´ etrieparrapport`a(Oy)

6.Caso` uIestsym´ etriqueparrapport`a0eto` ux(-t)=y(t)et

y(-t)=x(t):alorspour toutt?I,lep ointM(-t)estle sym´ etrique dupoin tM(t)parrapp ort`a ladroited'´equationy=x.D'o` u

EtudesurI∩R

puissym´ etrieparrapport`ay=x

6.2.COURBESP ARAM

ETR

EESENCOORDONN

EESCART

ESIENNES45

7.Caso` uIestsym´ etriqueparrapport`a0eto` ux(-t)=-y(t)et

y(-t)=-x(t):alorspour toutt?I,lep oint M(-t)estle sym´ etrique dupoin tM(t)parrapp ort`a ladroited'´equationy=-x.D'o` u

EtudesurI∩R

puissym´ etrieparrapport`ay=-x

8.Caso` uIestsym´ etriqueparrapport`a

2 avecuncertainr´eel αeto` ux(α-t)=x(t)ety(α-t)=y(t):alorspour toutt?I,le pointM(α-t)co¨ıncideav eclepointM(t).Orl'application t→α-t estg´ eom´etriquementlasym´etriedeRparrapport `a 2 .Lorsquetd´ecrit 2 ,α-td´ecritquant`alui 2 .D'o` u

EtudesurI∩

2

6.2.3Pointssingulier s

Propri´et´e:Si

f (a) g (a) 0 0 ,alorsla tangente` alac ourbe aupointde param`etreaestladr oitequi passeparlep ointdec oordonn´ees(f(a),g(a))et dirig´eeparlevecteur decoordonn´ ees f (a) g (a) .Enp articulier: -Sig (a)=0etf (a)?=0,alorsil ya unetangentehorizontale `ala courbeaupointdecoor donn´ees (f(a),g(a)). -Sif (a)=0etg (a)?=0,alorsil yaune tangenteverticale `ala courbe aupoint decoordonn´ ees(f(a),g(a)).

Remarque:Sif

(t 0 )=0 etg (t 0 )=0, alorslep ointde param`etre t 0 est ditstationnaire ousingulier.Pourd ´ecrirel'allure delacourb e,nousutilisons lesDLdes fonctionsfetgauvoisinage det 0 (quandilsexisten t).

Notation:si f(t)=a

0 +a 1 (t-t 0 )+···+a n (t-t 0 n +o((t-t 0 n )et g(t)=b 0 +b 1 (t-t 0 )+···+b n (t-t 0 n +o((t-t 0 n ),notonse i a i b i ,alors nous´ecriv ons:

M(t)=e

0 +e 1 (t-t 0 )+···+e n (t-t 0 n +o((t-t 0 n Enfait,si fetgsontsuffisammentd´erivables, nousobtenonsuneformule deTa ylor-Youngvectorielle:

M(t)=M(t

0 (t-t 0 1! M (t 0 (t-t 0 n n! M (n) (t 0 )+o((t-t 0 n

46CHAPITRE6.COURBES PARAM

ETR EES avecM (k) (t 0 f (k) (t 0 g (k) (t 0 Th´eor`eme.Soientm6.2.4Etudepratiqued'une courbe param´etr´ee

Leplang ´en ´eralestlesuivant

-D´ eterminationdudomaine,desp´eriodeset dessym´ etries´ eventuelles ; -Calculde x (t)etde y (t),tableaude variations; -Etudedes asymptotes; -Etudedes points singuliers,calculde quelquestangentes; -D´ eterminationdespointsdoubles; -Repr´ esentationgraphique.

Exemple:Etudedela courbe

M(t)= x(t) y(t) t+ 4 t-1 t+1+ 4 (t-1) 2quotesdbs_dbs19.pdfusesText_25
[PDF] courbe paramétrée tracer

[PDF] courbe paramétrée symétrie

[PDF] courbes paramétrées exercices corrigés prépa

[PDF] courbe paramétrée exo7

[PDF] comment dessiner une branche parabolique

[PDF] résumé branches infinies

[PDF] branches infinies developpement limité

[PDF] branche parabolique de direction asymptotique

[PDF] methode branches infinies

[PDF] etudes des fonctions branches infinies

[PDF] mode d'emploi lave linge brandt

[PDF] comment utiliser machine a laver brandt

[PDF] bras de levier définition

[PDF] levier inter appui

[PDF] cours moment d'une force par rapport ? un axe