2.2 Quelques propriétés des intégrales définies









FORMULAIRE d'INTÉGRATION Dans ce qui suit "c" est une

PRIMITIVES connues en terminale. ∫ a dx = ax + c. ∫ x dx = x2. 2 2+ kπ k ∈ Z ... ax + b. = 1 a ln
m


2.2 Quelques propriétés des intégrales définies

f(x)dx a et b sont les bornes d'intégration
amphi


Tableaux des dérivées

%20primitives


) Quelques formules de trigonométrie vraiment utiles. a





Analyse Numérique

d) Résoudre le système linéaire Ax = b en remplaçant PA par LU et en utilisant les algorithmes de substitution progressive et rétrograde. Exercice 2. 1) Pour 
Anum


Analyse Numérique

4.4 Analyse de l'erreur dans les méthodes d'intégration . . . . . . . . . . . . 79 Les bases b = 2 ou les puissances de 2 sont fréquemment utilisées par.
polyAnaNum


TD 1 Intégrales généralisées

16 sept. 2016 En somme quelles fonctions sont susceptibles d'intégration ? ... 2 l'intégrale d'une fonction continue. Pour calculer ∫b.
maths td support


Analyse numérique

Sortie : x = (xi)1≤i≤n ∈ Kn tel que Ax = b. 1. xn = bn ann. ;. 2. Pour i de n − 1 à 
PolyAnalyseNum





Calculs d'intégrales et de primitives

2. Intégration des fonctions rationnelles réelles. Fonctions rationnelles on isole c en multipliant par (x − 1) : (x − 1)F(x) = c + (x − 1)ax+b.
chap Primitives POLY


Primitives élémentaires Règles d'intégration

Règles d'intégration Soit une fonction f continue et positive sur [a;b]. ... Primitive. Intervalle f(x) = a. F(x) = ax. R f(x) = x. F(x) = x2. 2.
tableau primitives regles integration


L'usage de calculatrices est interdit.

Beaucoup de relations dépendent de x `a la fin des calculs. N'aboutit pas souvent mais souvent tenté. (b) Cette question est peu abordée. 2. (a) Cette question 
e a


212359 2.2 Quelques propriétés des intégrales définies Définition2.4.(Intégrabili téausensdeR iemann)Unefonc tionréellef:[a,b]Restdite intégrablesur[a,b],si ??>0,?f 1 ,f 2 :[a,b]Rfonctionsenescalierstell esque : 1.f 1 ?f?f 2 (i.e.?x?[a,b],f 1 (x)?f(x)?f 2 (x)) 2. a b f 2 (x)dx- a b f 1 (x)dx

Théorème2.5.(Intégrale définie)Onsu pposequelafonctionré ellef:[a,b]Restinté grablesur

[a,b].Considéronsalorsunesubdivisionrégulièrea=x 0 Alorslasuite réelle determegénérale I n convergedansRets alimit e,notée a b f(x)dxestappel éeintégraledéfiniede fsur[a,b]. Danscecour snousn ousintéressero nsessentiell ementauxfonctionscontinueset auxfonctionsconti- nuesparmo rceaux,dé finiessurunintervallefermébo rné[a,b]deR. Définition2.6.Ondi tquelafon ctionf:[a,b]Restcont inueparmorceauxsifestborn éeet l'ensembledespointsdedisco ntinuité defestdeca rdinal fini. Nousadmettr onsetutiliseronssouventle théorè mesuivant: Théorème2.7.Soit[a,b]unin tervallefermébornédeR.Alorstoutefonctioncontinuef:[a,b]R estinté grablesur[a,b].

Note2.8.Dansl'exp ression

a b f(x)dx,aetbsontlesbo rnesd'intég ration,xestlav ariabl ed'inté-

gration;c'estunevariab lemuette.Ellepe utdoncêt reremplacéepartoute autrevaria ble,àl'exception

dece llesdesbornesd'int égratione tbiensûrdelavaria bleutiliséepournomméelafonc tion.Ainsi,si f:

[a,b]Restinté grablesur[a,b],onaleségalitéssuivantes: a b f(x)dx= a b f(t)dt= a b f(u)du= a b f(v)dv= a b f(y)dy.

2.2Que lquespropriétésdesintégral esdéfinies

Onsu pposedanslalistedespr opriétésci- dessou sque[a,b]estunin terval lefermébornédeR,fetg

sontdesfon ctions intégrablessur[a,b].

1.Qu andlesbornesd 'intégratio nsontconfondues:

a a f(x)dx=0

2.La relat iondeChasles:

?c?[a,b], a c f(x)dx+ c b f(x)dx= a b f(x)dx

3.Qu andonpermutele sbor nesd'intégration:

b a f(x)dx=- a b f(x)dx

4.La linéa rité:

i. a b (f+g)(x)dx= a b f(x)dx+ a b g(x)dx ii. ?λ?R, a b (λf)(x)dx=λ a b f(x)dx

5.Qu andlegraphed'u nedesf onctionsesttou joursaudessusdel' autre:

Sif?gsur[a,b],alors

a b f(x)dx? a b g(x)dx

2.2Quel quespropriétésdesintég ralesdéfinies11

6.Com paraisondelavaleurabsoluedel'i ntégra leetde l'intégraledelavaleura bsolue :

a b f(x)dx a b |f(x)|dx

2.3Pri mitives:calculd'intégralesdéfinies

Souvent,danslapratique,cal culerun eintég raledéfinieseramènerapournous,àch ercheruneprim itive

pourlafon ctionà intégrer. Définition2.9.Soitf:[a,b]Runefonc tionréelle.Onappellepri mitivedef,toutefonctiondéri- vableFdéfiniesur[a,b]etvér ifiantF =f.

Exemple2.10.

•Surl' intervalle[-2,3],lafonctionFdéfinieparF(x)=-cos(x)estunep rimitive delafonction fdéfiniesur[-2,3]parf(x)=sin(x). •SurR,lafonctionx- 1 2 x 2 estune primitive def:x-x;lafonctionx- 1 2 x 2 +7enes t uneaut re. Théorème2.11.Sil afoncti onf:[a,b]Radmetunepri mitiveF,alorslesprimitivesdefsont touteslesfoncti onsGdela formeG=F+λpourλparcourantR. Corollaire2.12.Soientf:[a,b]Runefonc tionréellesupposéeadmett reuneprimitiveF,x 0 ?[a,b] ety 0 ?R.Alorsilexisteuneetuneseuleprimitivedefprenantlavaleury 0 enx 0 Exemple2.13.Soitf:[-2,2]Rdéfinieparf(x)=-x.fadmetuneuniqu eprimitiv eF,prenant lava leur3en1.PourdéterminerF,onécritquetouteprimitivedefestdel aforme F(x)=- 1 2 x 2

oùλestunec onstanter éelle.LaconditionF(1)=3fixelava leurde laconstanteλ.F(1)=3siet seule-

mentsiλ= 7 2 .Conclusion:F(x)= 1 Définition2.4.(Intégrabili téausensdeR iemann)Unefonc tionréellef:[a,b]Restdite intégrablesur[a,b],si ??>0,?f 1 ,f 2 :[a,b]Rfonctionsenescalierstell esque : 1.f 1 ?f?f 2 (i.e.?x?[a,b],f 1 (x)?f(x)?f 2 (x)) 2. a b f 2 (x)dx- a b f 1 (x)dx

Théorème2.5.(Intégrale définie)Onsu pposequelafonctionré ellef:[a,b]Restinté grablesur

[a,b].Considéronsalorsunesubdivisionrégulièrea=x 0 Alorslasuite réelle determegénérale I n convergedansRets alimit e,notée a b f(x)dxestappel éeintégraledéfiniede fsur[a,b]. Danscecour snousn ousintéressero nsessentiell ementauxfonctionscontinueset auxfonctionsconti- nuesparmo rceaux,dé finiessurunintervallefermébo rné[a,b]deR. Définition2.6.Ondi tquelafon ctionf:[a,b]Restcont inueparmorceauxsifestborn éeet l'ensembledespointsdedisco ntinuité defestdeca rdinal fini. Nousadmettr onsetutiliseronssouventle théorè mesuivant: Théorème2.7.Soit[a,b]unin tervallefermébornédeR.Alorstoutefonctioncontinuef:[a,b]R estinté grablesur[a,b].

Note2.8.Dansl'exp ression

a b f(x)dx,aetbsontlesbo rnesd'intég ration,xestlav ariabl ed'inté-

gration;c'estunevariab lemuette.Ellepe utdoncêt reremplacéepartoute autrevaria ble,àl'exception

dece llesdesbornesd'int égratione tbiensûrdelavaria bleutiliséepournomméelafonc tion.Ainsi,si f:

[a,b]Restinté grablesur[a,b],onaleségalitéssuivantes: a b f(x)dx= a b f(t)dt= a b f(u)du= a b f(v)dv= a b f(y)dy.

2.2Que lquespropriétésdesintégral esdéfinies

Onsu pposedanslalistedespr opriétésci- dessou sque[a,b]estunin terval lefermébornédeR,fetg

sontdesfon ctions intégrablessur[a,b].

1.Qu andlesbornesd 'intégratio nsontconfondues:

a a f(x)dx=0

2.La relat iondeChasles:

?c?[a,b], a c f(x)dx+ c b f(x)dx= a b f(x)dx

3.Qu andonpermutele sbor nesd'intégration:

b a f(x)dx=- a b f(x)dx

4.La linéa rité:

i. a b (f+g)(x)dx= a b f(x)dx+ a b g(x)dx ii. ?λ?R, a b (λf)(x)dx=λ a b f(x)dx

5.Qu andlegraphed'u nedesf onctionsesttou joursaudessusdel' autre:

Sif?gsur[a,b],alors

a b f(x)dx? a b g(x)dx

2.2Quel quespropriétésdesintég ralesdéfinies11

6.Com paraisondelavaleurabsoluedel'i ntégra leetde l'intégraledelavaleura bsolue :

a b f(x)dx a b |f(x)|dx

2.3Pri mitives:calculd'intégralesdéfinies

Souvent,danslapratique,cal culerun eintég raledéfinieseramènerapournous,àch ercheruneprim itive

pourlafon ctionà intégrer. Définition2.9.Soitf:[a,b]Runefonc tionréelle.Onappellepri mitivedef,toutefonctiondéri- vableFdéfiniesur[a,b]etvér ifiantF =f.

Exemple2.10.

•Surl' intervalle[-2,3],lafonctionFdéfinieparF(x)=-cos(x)estunep rimitive delafonction fdéfiniesur[-2,3]parf(x)=sin(x). •SurR,lafonctionx- 1 2 x 2 estune primitive def:x-x;lafonctionx- 1 2 x 2 +7enes t uneaut re. Théorème2.11.Sil afoncti onf:[a,b]Radmetunepri mitiveF,alorslesprimitivesdefsont touteslesfoncti onsGdela formeG=F+λpourλparcourantR. Corollaire2.12.Soientf:[a,b]Runefonc tionréellesupposéeadmett reuneprimitiveF,x 0 ?[a,b] ety 0 ?R.Alorsilexisteuneetuneseuleprimitivedefprenantlavaleury 0 enx 0 Exemple2.13.Soitf:[-2,2]Rdéfinieparf(x)=-x.fadmetuneuniqu eprimitiv eF,prenant lava leur3en1.PourdéterminerF,onécritquetouteprimitivedefestdel aforme F(x)=- 1 2 x 2

oùλestunec onstanter éelle.LaconditionF(1)=3fixelava leurde laconstanteλ.F(1)=3siet seule-

mentsiλ= 7 2 .Conclusion:F(x)= 1